Your browser doesn't support javascript.
loading
Ammonium-Ammonia Complexes, N2H7+, in Ammonium closo-Borate Ammines: Synthesis, Structure, and Properties.
Grinderslev, Jakob B; Lee, Young-Su; Paskevicius, Mark; Møller, Kasper T; Yan, Yigang; Cho, Young Whan; Jensen, Torben R.
Afiliação
  • Grinderslev JB; Center for Materials Crystallography, Interdisciplinary Nanoscience Center (iNANO) and Department of Chemistry, Aarhus University, Langelandsgade 140, DK-8000 Aarhus C, Denmark.
  • Lee YS; Center for Energy Materials Research, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea.
  • Paskevicius M; Center for Materials Crystallography, Interdisciplinary Nanoscience Center (iNANO) and Department of Chemistry, Aarhus University, Langelandsgade 140, DK-8000 Aarhus C, Denmark.
  • Møller KT; Physics and Astronomy, Fuels and Energy Technology Institute (FETI), Curtin University, Bentley, Western Australia 6845, Australia.
  • Yan Y; Center for Materials Crystallography, Interdisciplinary Nanoscience Center (iNANO) and Department of Chemistry, Aarhus University, Langelandsgade 140, DK-8000 Aarhus C, Denmark.
  • Cho YW; Physics and Astronomy, Fuels and Energy Technology Institute (FETI), Curtin University, Bentley, Western Australia 6845, Australia.
  • Jensen TR; Center for Materials Crystallography, Interdisciplinary Nanoscience Center (iNANO) and Department of Chemistry, Aarhus University, Langelandsgade 140, DK-8000 Aarhus C, Denmark.
Inorg Chem ; 59(16): 11449-11458, 2020 Aug 17.
Article em En | MEDLINE | ID: mdl-32799501
Metal closo-borates have recently received significant attention due to their potential applications as solid-state ionic conductors. Here, the synthesis, crystal structures, and properties of (NH4)2B10H10·xNH3 (x = 1/2, 1 (α and ß)) and (NH4)2B12H12·xNH3 (x = 1 and 2) are reported. In situ synchrotron radiation powder X-ray diffraction allows for the investigation of structural changes as a function of temperature. The structures contain the complex cation N2H7+, which is rarely observed in solid materials, but can be important for proton conductivity. The structures are optimized by density functional theory (DFT) calculations to validate the structural models and provide detailed information about the hydrogen positions. Furthermore, the hydrogen dynamics of the complex cation N2H7+ are studied by molecular dynamics simulations, which reveals several events of a proton transfer within the N2H7+ units. The thermal properties are investigated by thermogravimetry and differential scanning calorimetry coupled with mass spectrometry, revealing that NH3 is released stepwise, which results in the formation of (NH4)2BnHn (n = 10 and 12) during heating. The proton conductivity of (NH4)2B12H12·xNH3 (x = 1 and 2) determined by electrochemical impedance spectroscopy is low but orders of magnitude higher than that of pristine (NH4)2B12H12. The thermal stability of the complex cation N2H7+ is high, up to 170 °C, which may provide new possible applications of these proton-rich materials.

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Revista: Inorg Chem Ano de publicação: 2020 Tipo de documento: Article País de afiliação: Dinamarca

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Revista: Inorg Chem Ano de publicação: 2020 Tipo de documento: Article País de afiliação: Dinamarca