Your browser doesn't support javascript.
loading
Investigating the Role of Methylation in Silencing of VDR Gene Expression in Normal Cells during Hematopoiesis and in Their Leukemic Counterparts.
Nowak, Urszula; Janik, Sylwia; Marchwicka, Aleksandra; Laszkiewicz, Agnieszka; Jakuszak, Agnieszka; Cebrat, Malgorzata; Marcinkowska, Ewa.
Afiliação
  • Nowak U; Laboratory of Protein Biochemistry, Faculty of Biotechnology, University of Wroclaw, Joliot-Curie 14a, 50-383 Wroclaw, Poland.
  • Janik S; Laboratory of Molecular and Cellular Immunology, Department of Tumor Immunology, Institute of Immunology and Experimental Therapy, Polish Academy of Science, Weigla 12, 53-114 Wroclaw, Poland.
  • Marchwicka A; Laboratory of Protein Biochemistry, Faculty of Biotechnology, University of Wroclaw, Joliot-Curie 14a, 50-383 Wroclaw, Poland.
  • Laszkiewicz A; Laboratory of Molecular and Cellular Immunology, Department of Tumor Immunology, Institute of Immunology and Experimental Therapy, Polish Academy of Science, Weigla 12, 53-114 Wroclaw, Poland.
  • Jakuszak A; Laboratory of Protein Biochemistry, Faculty of Biotechnology, University of Wroclaw, Joliot-Curie 14a, 50-383 Wroclaw, Poland.
  • Cebrat M; Laboratory of Molecular and Cellular Immunology, Department of Tumor Immunology, Institute of Immunology and Experimental Therapy, Polish Academy of Science, Weigla 12, 53-114 Wroclaw, Poland.
  • Marcinkowska E; Laboratory of Protein Biochemistry, Faculty of Biotechnology, University of Wroclaw, Joliot-Curie 14a, 50-383 Wroclaw, Poland.
Cells ; 9(9)2020 08 29.
Article em En | MEDLINE | ID: mdl-32872475
(1) Background: Vitamin D receptor (VDR) is present in multiple types of blood cells, and its ligand, 1,25-dihydroxyvitamin D (1,25D), is important for the proper functioning of the immune system. Activity of VDR is higher in hematopoietic stem and progenitor cells than in fully differentiated blood cells of mice and humans. In some human acute myeloid leukemia (AML) blasts, the expression of the VDR gene is also high. The mechanism of silencing the VDR gene expression during differentiation of blood cells has been addressed in this work. (2) Methods: The cells have been obtained using fluorescence activated sorting from murine tissues and from human umbilical cord blood (UCB). Then, the expression of the VDR gene and transcriptional activity of the VDR protein has been tested in real-time polymerase chain reaction (PCR). Eventually, the methylation of VDR promoter regions was tested using bisulfite sequencing. (3) Results: The CpG islands in VDR promoters were not methylated in the cells studied both in mice and in humans. The use of hypomethylating agents had no effect toward expression of human VDR transcripts, but it increased expression of the VDR-target gene, CYP24A1. (4) Conclusions: The expression of the VDR gene and transcriptional activity of the VDR protein varies at successive stages of hematopoietic differentiation in humans and mice, and in blasts from AML patients. The experiments presented in this case indicate that methylation of the promoter region of the VDR gene is not the major mechanism responsible for these differences.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Leucemia Mieloide Aguda / Receptores de Calcitriol / Metilação de DNA / Hematopoese Limite: Adult / Aged / Female / Humans / Male / Middle aged Idioma: En Revista: Cells Ano de publicação: 2020 Tipo de documento: Article País de afiliação: Polônia

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Leucemia Mieloide Aguda / Receptores de Calcitriol / Metilação de DNA / Hematopoese Limite: Adult / Aged / Female / Humans / Male / Middle aged Idioma: En Revista: Cells Ano de publicação: 2020 Tipo de documento: Article País de afiliação: Polônia