Your browser doesn't support javascript.
loading
Calycosin inhibited autophagy and oxidative stress in chronic kidney disease skeletal muscle atrophy by regulating AMPK/SKP2/CARM1 signalling pathway.
Hu, Rong; Wang, Ming-Qing; Liu, Ling-Yu; You, Hai-Yan; Wu, Xiao-Hui; Liu, Yang-Yang; Wang, Yan-Jing; Lu, Lu; Xiao, Wei; Wei, Lian-Bo.
Afiliação
  • Hu R; School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China.
  • Wang MQ; Shenzhen Hospital, Southern Medical University, Shenzhen, China.
  • Liu LY; School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China.
  • You HY; Shenzhen Hospital, Southern Medical University, Shenzhen, China.
  • Wu XH; School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China.
  • Liu YY; Shenzhen Hospital, Southern Medical University, Shenzhen, China.
  • Wang YJ; School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China.
  • Lu L; Shenzhen Hospital, Southern Medical University, Shenzhen, China.
  • Xiao W; School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China.
  • Wei LB; Shenzhen Hospital, Southern Medical University, Shenzhen, China.
J Cell Mol Med ; 24(19): 11084-11099, 2020 10.
Article em En | MEDLINE | ID: mdl-32910538
Skeletal muscle atrophy is a common and serious complication of chronic kidney disease (CKD). Oxidative stress and autophagy are the primary molecular mechanisms involved in muscle atrophy. Calycosin, a major component of Radix astragali, exerts anti-inflammatory, anti-oxidative stress and anti-autophagy effects. We investigated the effects and mechanisms of calycosin on skeletal muscle atrophy in vivo and in vitro. 5/6 nephrectomy (5/6 Nx) rats were used as a model of CKD. We evaluated bodyweight and levels of serum creatinine (SCr), blood urea nitrogen (BUN) and serum albumin (Alb). H&E staining, cell apoptosis, oxidative stress biomarkers, autophagosome and LC3A/B levels were performed and evaluated in skeletal muscle of CKD rat. Calycosin treatment improved bodyweight and renal function, alleviated muscle atrophy (decreased the levels of MuRF1 and MAFbx), increased superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GSH-Px) activity and reduced malondialdehyde (MDA) levels in skeletal muscle of CKD rats. Importantly, calycosin reduced autophagosome formation, down-regulated the expression of LC3A/B and ATG7 through inhibition of AMPK and FOXO3a, and increased SKP2, which resulted in decreased expression of CARM1, H3R17me2a. Similar results were observed in C2C12 cells treated with TNF-α and calycosin. Our findings showed that calycosin inhibited oxidative stress and autophagy in CKD induced skeletal muscle atrophy and in TNF-α-induced C2C12 myotube atrophy, partially by regulating the AMPK/SKP2/CARM1 signalling pathway.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Proteína-Arginina N-Metiltransferases / Autofagia / Atrofia Muscular / Estresse Oxidativo / Músculo Esquelético / Insuficiência Renal Crônica / Proteínas Quinases Ativadas por AMP / Isoflavonas Tipo de estudo: Prognostic_studies Limite: Animals Idioma: En Revista: J Cell Mol Med Assunto da revista: BIOLOGIA MOLECULAR Ano de publicação: 2020 Tipo de documento: Article País de afiliação: China

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Proteína-Arginina N-Metiltransferases / Autofagia / Atrofia Muscular / Estresse Oxidativo / Músculo Esquelético / Insuficiência Renal Crônica / Proteínas Quinases Ativadas por AMP / Isoflavonas Tipo de estudo: Prognostic_studies Limite: Animals Idioma: En Revista: J Cell Mol Med Assunto da revista: BIOLOGIA MOLECULAR Ano de publicação: 2020 Tipo de documento: Article País de afiliação: China