Your browser doesn't support javascript.
loading
Heartbeat Detection by Laser Doppler Vibrometry and Machine Learning.
Antognoli, Luca; Moccia, Sara; Migliorelli, Lucia; Casaccia, Sara; Scalise, Lorenzo; Frontoni, Emanuele.
Afiliação
  • Antognoli L; Department of Industrial Engineering and Mathematical Sciences, Università Politecnica delle Marche, 60121 Ancona, Italy.
  • Moccia S; Department of Information Engineering, Università Politecnica delle Marche, 60121 Ancona, Italy.
  • Migliorelli L; Department of Advanced Robotics, Istituto Italiano di Tecnologia, 16163 Genoa, Italy.
  • Casaccia S; Department of Information Engineering, Università Politecnica delle Marche, 60121 Ancona, Italy.
  • Scalise L; Department of Industrial Engineering and Mathematical Sciences, Università Politecnica delle Marche, 60121 Ancona, Italy.
  • Frontoni E; Department of Industrial Engineering and Mathematical Sciences, Università Politecnica delle Marche, 60121 Ancona, Italy.
Sensors (Basel) ; 20(18)2020 Sep 18.
Article em En | MEDLINE | ID: mdl-32962134
Background: Heartbeat detection is a crucial step in several clinical fields. Laser Doppler Vibrometer (LDV) is a promising non-contact measurement for heartbeat detection. The aim of this work is to assess whether machine learning can be used for detecting heartbeat from the carotid LDV signal. Methods: The performances of Support Vector Machine (SVM), Decision Tree (DT), Random Forest (RF) and K-Nearest Neighbor (KNN) were compared using the leave-one-subject-out cross-validation as the testing protocol in an LDV dataset collected from 28 subjects. The classification was conducted on LDV signal windows, which were labeled as beat, if containing a beat, or no-beat, otherwise. The labeling procedure was performed using electrocardiography as the gold standard. Results: For the beat class, the f1-score (f1) values were 0.93, 0.93, 0.95, 0.96 for RF, DT, KNN and SVM, respectively. No statistical differences were found between the classifiers. When testing the SVM on the full-length (10 min long) LDV signals, to simulate a real-world application, we achieved a median macro-f1 of 0.76. Conclusions: Using machine learning for heartbeat detection from carotid LDV signals showed encouraging results, representing a promising step in the field of contactless cardiovascular signal analysis.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Máquina de Vetores de Suporte / Aprendizado de Máquina / Frequência Cardíaca Tipo de estudo: Diagnostic_studies / Guideline / Prognostic_studies Limite: Humans Idioma: En Revista: Sensors (Basel) Ano de publicação: 2020 Tipo de documento: Article País de afiliação: Itália

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Máquina de Vetores de Suporte / Aprendizado de Máquina / Frequência Cardíaca Tipo de estudo: Diagnostic_studies / Guideline / Prognostic_studies Limite: Humans Idioma: En Revista: Sensors (Basel) Ano de publicação: 2020 Tipo de documento: Article País de afiliação: Itália