Your browser doesn't support javascript.
loading
Revisiting particle dry deposition and its role in radiative effect estimates.
Emerson, Ethan W; Hodshire, Anna L; DeBolt, Holly M; Bilsback, Kelsey R; Pierce, Jeffrey R; McMeeking, Gavin R; Farmer, Delphine K.
Afiliação
  • Emerson EW; Department of Chemistry, Colorado State University, Fort Collins, CO 80523.
  • Hodshire AL; Handix Scientific LLC, Boulder, CO 80301.
  • DeBolt HM; Department of Chemistry, Colorado State University, Fort Collins, CO 80523.
  • Bilsback KR; Department of Atmospheric Sciences, Colorado State University, Fort Collins, CO 80523.
  • Pierce JR; Department of Chemistry, Colorado State University, Fort Collins, CO 80523.
  • McMeeking GR; Department of Atmospheric Sciences, Colorado State University, Fort Collins, CO 80523.
  • Farmer DK; Department of Atmospheric Sciences, Colorado State University, Fort Collins, CO 80523.
Proc Natl Acad Sci U S A ; 117(42): 26076-26082, 2020 10 20.
Article em En | MEDLINE | ID: mdl-33020302
Wet and dry deposition remove aerosols from the atmosphere, and these processes control aerosol lifetime and thus impact climate and air quality. Dry deposition is a significant source of aerosol uncertainty in global chemical transport and climate models. Dry deposition parameterizations in most global models were developed when few particle deposition measurements were available. However, new measurement techniques have enabled more size-resolved particle flux observations. We combined literature measurements with data that we collected over a grassland in Oklahoma and a pine forest in Colorado to develop a dry deposition parameterization. We find that relative to observations, previous parameterizations overestimated deposition of the accumulation and Aitken mode particles, and underestimated in the coarse mode. These systematic differences in observed and modeled accumulation mode particle deposition velocities are as large as an order of magnitude over terrestrial ecosystems. As accumulation mode particles form most of the cloud condensation nuclei (CCN) that influence the indirect radiative effect, this model-measurement discrepancy in dry deposition alters modeled CCN and radiative forcing. We present a revised observationally driven parameterization for regional and global aerosol models. Using this revised dry deposition scheme in the Goddard Earth Observing System (GEOS)-Chem chemical transport model, we find that global surface accumulation-mode number concentrations increase by 62% and enhance the global combined anthropogenic and natural aerosol indirect effect by -0.63 W m-2 Our observationally constrained approach should reduce the uncertainty of particle dry deposition in global chemical transport models.
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Revista: Proc Natl Acad Sci U S A Ano de publicação: 2020 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Revista: Proc Natl Acad Sci U S A Ano de publicação: 2020 Tipo de documento: Article