Your browser doesn't support javascript.
loading
Molecular Characterization, Protein-Protein Interaction Network, and Evolution of Four Glutathione Peroxidases from Tetrahymena thermophila.
Ferro, Diana; Bakiu, Rigers; Pucciarelli, Sandra; Miceli, Cristina; Vallesi, Adriana; Irato, Paola; Santovito, Gianfranco.
Afiliação
  • Ferro D; BIO5 Institute, University of Arizona, Tucson, AZ 85719, USA.
  • Bakiu R; Department of Pediatrics, Children's Mercy Hospital and Clinics, Kansas City, MO 64108, USA.
  • Pucciarelli S; Department of Aquaculture and Fisheries, Agricultural University of Tirana, 1000 Tiranë, Albania.
  • Miceli C; School of Biosciences and Veterinary Medicine, University of Camerino, 62032 Camerino, Italy.
  • Vallesi A; School of Biosciences and Veterinary Medicine, University of Camerino, 62032 Camerino, Italy.
  • Irato P; School of Biosciences and Veterinary Medicine, University of Camerino, 62032 Camerino, Italy.
  • Santovito G; Department of Biology, University of Padova, 35131 Padova, Italy.
Antioxidants (Basel) ; 9(10)2020 Oct 02.
Article em En | MEDLINE | ID: mdl-33023127
ABSTRACT
Glutathione peroxidases (GPxs) form a broad family of antioxidant proteins essential for maintaining redox homeostasis in eukaryotic cells. In this study, we used an integrative approach that combines bioinformatics, molecular biology, and biochemistry to investigate the role of GPxs in reactive oxygen species detoxification in the unicellular eukaryotic model organism Tetrahymena thermophila. Both phylogenetic and mechanistic empirical model analyses provided indications about the evolutionary relationships among the GPXs of Tetrahymena and the orthologous enzymes of phylogenetically related species. In-silico gene characterization and text mining were used to predict the functional relationships between GPxs and other physiologically-relevant processes. The GPx genes contain conserved transcriptional regulatory elements in the promoter region, which suggest that transcription is under tight control of specialized signaling pathways. The bioinformatic findings were next experimentally validated by studying the time course of gene transcription and enzymatic activity after copper (Cu) exposure. Results emphasize the role of GPxs in the detoxification pathways that, by complex regulation of GPx gene expression, enable Tethraymena to survive in high Cu concentrations and the associated redox environment.
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Tipo de estudo: Prognostic_studies Idioma: En Revista: Antioxidants (Basel) Ano de publicação: 2020 Tipo de documento: Article País de afiliação: Estados Unidos

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Tipo de estudo: Prognostic_studies Idioma: En Revista: Antioxidants (Basel) Ano de publicação: 2020 Tipo de documento: Article País de afiliação: Estados Unidos