Your browser doesn't support javascript.
loading
Disease-associated HCN4 V759I variant is not sufficient to impair cardiac pacemaking.
Erlenhardt, Nadine; Kletke, Olaf; Wohlfarth, Franziska; Komadowski, Marlene A; Clasen, Lukas; Makimoto, Hisaki; Rinné, Susanne; Kelm, Malte; Jungen, Christiane; Decher, Niels; Meyer, Christian; Klöcker, Nikolaj.
Afiliação
  • Erlenhardt N; Institute of Neurophysiology, Medical Faculty, University of Düsseldorf, Universitätsstr 1, 40225, Düsseldorf, Germany.
  • Kletke O; Institute of Neurophysiology, Medical Faculty, University of Düsseldorf, Universitätsstr 1, 40225, Düsseldorf, Germany.
  • Wohlfarth F; Institute of Neurophysiology, Medical Faculty, University of Düsseldorf, Universitätsstr 1, 40225, Düsseldorf, Germany.
  • Komadowski MA; Institute of Physiology and Pathophysiology and Marburg Center for Mind, Brain, and Behavior, Philipps-University Marburg, Deutschhausstrasse 1-2, 35037, Marburg, Germany.
  • Clasen L; Department of Cardiology Pulmonology and Vascular Medicine Medical Faculty, University Hospital Düsseldorf, Moorenstr 5, 40225, Düsseldorf, Germany.
  • Makimoto H; Department of Cardiology Pulmonology and Vascular Medicine Medical Faculty, University Hospital Düsseldorf, Moorenstr 5, 40225, Düsseldorf, Germany.
  • Rinné S; Institute of Physiology and Pathophysiology and Marburg Center for Mind, Brain, and Behavior, Philipps-University Marburg, Deutschhausstrasse 1-2, 35037, Marburg, Germany.
  • Kelm M; Department of Cardiology Pulmonology and Vascular Medicine Medical Faculty, University Hospital Düsseldorf, Moorenstr 5, 40225, Düsseldorf, Germany.
  • Jungen C; Department of Cardiology, University Heart Center, University Hospital Hamburg-Eppendorf, Martinistr 52, 20246, Hamburg, Germany.
  • Decher N; DZHK (German Center for Cardiovascular Research), Berlin, Germany.
  • Meyer C; Institute of Physiology and Pathophysiology and Marburg Center for Mind, Brain, and Behavior, Philipps-University Marburg, Deutschhausstrasse 1-2, 35037, Marburg, Germany.
  • Klöcker N; Institute of Neurophysiology, Medical Faculty, University of Düsseldorf, Universitätsstr 1, 40225, Düsseldorf, Germany.
Pflugers Arch ; 472(12): 1733-1742, 2020 12.
Article em En | MEDLINE | ID: mdl-33095298
ABSTRACT
The hyperpolarization-activated cation current If is a key determinant for cardiac pacemaker activity. It is conducted by subunits of the hyperpolarization-activated cyclic nucleotide-gated (HCN) channel family, of which HCN4 is predominant in mammalian heart. Both loss-of-function and gain-of-function mutations of the HCN4 gene are associated with sinus node dysfunction in humans; however, their functional impact is not fully understood yet. Here, we sought to characterize a HCN4 V759I variant detected in a patient with a family history of sick sinus syndrome. The genomic analysis yielded a mono-allelic HCN4 V759I variant in a 49-year-old woman presenting with a family history of sick sinus syndrome. This HCN4 variant was previously classified as putatively pathogenic because genetically linked to sudden infant death syndrome and malignant epilepsy. However, detailed electrophysiological and cell biological characterization of HCN4 V759I in Xenopus laevis oocytes and embryonic rat cardiomyocytes, respectively, did not reveal any obvious abnormality. Voltage dependence and kinetics of mutant channel activation, modulation of cAMP-gating by the neuronal HCN channel auxiliary subunit PEX5R, and cell surface expression were indistinguishable from wild-type HCN4. In good agreement, the clinically likewise affected mother of the patient does not exhibit the reported HCN4 variance. HCN4 V759I resembles an innocuous genetic HCN channel variant, which is not sufficient to disturb cardiac pacemaking. Once more, our work emphasizes the importance of careful functional interpretation of genetic findings not only in the context of hereditary cardiac arrhythmias.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Bradicardia / Canais de Potássio / Mutação de Sentido Incorreto / Canais Disparados por Nucleotídeos Cíclicos Ativados por Hiperpolarização / Frequência Cardíaca / Proteínas Musculares Tipo de estudo: Diagnostic_studies / Risk_factors_studies Limite: Animals / Female / Humans / Middle aged Idioma: En Revista: Pflugers Arch Ano de publicação: 2020 Tipo de documento: Article País de afiliação: Alemanha

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Bradicardia / Canais de Potássio / Mutação de Sentido Incorreto / Canais Disparados por Nucleotídeos Cíclicos Ativados por Hiperpolarização / Frequência Cardíaca / Proteínas Musculares Tipo de estudo: Diagnostic_studies / Risk_factors_studies Limite: Animals / Female / Humans / Middle aged Idioma: En Revista: Pflugers Arch Ano de publicação: 2020 Tipo de documento: Article País de afiliação: Alemanha