Transition Strength Measurements to Guide Magic Wavelength Selection in Optically Trapped Molecules.
Phys Rev Lett
; 125(15): 153001, 2020 Oct 09.
Article
em En
| MEDLINE
| ID: mdl-33095629
Optical trapping of molecules with long coherence times is crucial for many protocols in quantum information and metrology. However, the factors that limit the lifetimes of the trapped molecules remain elusive and require improved understanding of the underlying molecular structure. Here we show that measurements of vibronic line strengths in weakly and deeply bound ^{88}Sr_{2} molecules, combined with ab initio calculations, allow for unambiguous identification of vibrational quantum numbers. This, in turn, enables the construction of refined excited potential energy curves, informing the selection of magic wavelengths that facilitate long vibrational coherence. We demonstrate Rabi oscillations between far-separated vibrational states that persist for nearly 100 ms.
Texto completo:
1
Coleções:
01-internacional
Base de dados:
MEDLINE
Tipo de estudo:
Prognostic_studies
Idioma:
En
Revista:
Phys Rev Lett
Ano de publicação:
2020
Tipo de documento:
Article
País de afiliação:
Estados Unidos