Your browser doesn't support javascript.
loading
Identification of nephronectin as a new target for IGF1 action.
Sarfstein, Rive; Lapkina-Gendler, Lena; Nagaraj, Karthik; Laron, Zvi; Werner, Haim.
Afiliação
  • Sarfstein R; Department of Human Molecular Genetics and Biochemistry, Sackler School of Medicine, Tel Aviv University, Tel Aviv 69978, Israel.
  • Lapkina-Gendler L; Department of Human Molecular Genetics and Biochemistry, Sackler School of Medicine, Tel Aviv University, Tel Aviv 69978, Israel.
  • Nagaraj K; Department of Human Molecular Genetics and Biochemistry, Sackler School of Medicine, Tel Aviv University, Tel Aviv 69978, Israel.
  • Laron Z; Endocrine and Diabetes Research Unit, Schneider Children's Medical Center, Petah Tikva 49292, Israel.
  • Werner H; Department of Human Molecular Genetics and Biochemistry, Sackler School of Medicine, Tel Aviv University, Tel Aviv 69978, Israel; Shalom and Varda Yoran Institute for Human Genome Research, Tel Aviv University, Tel Aviv 69978, Israel. Electronic address: hwerner@post.tau.ac.il.
Eur J Cancer ; 141: 115-127, 2020 12.
Article em En | MEDLINE | ID: mdl-33130549
ABSTRACT

INTRODUCTION:

The growth hormone (GH)-insulin-like growth factor-1 (IGF1) endocrine axis has a key role in normal growth and development. Laron syndrome (LS) is a type of dwarfism that results from mutation of the GH receptor, leading to congenital IGF1 deficiency. Epidemiological studies have shown that LS patients are protected from cancer. Genome-wide profiling led to the identification of a series of metabolic genes whose differential expression in LS might be linked to cancer protection. Nephronectin (NPNT) is an intracellular and secreted extracellular matrix protein with important roles in kidney development. NPNT was identified as the top-downregulated gene in LS-derived cells in comparison with ethnic-, age- and gender-matched controls (p-value = 0.0148; fold-change = -3.12 versus controls). NPNT has not been previously linked to the IGF1 signaling pathway. The present study was aimed at evaluating the hypothesis that NPNT is a new target for IGF1 action and that decreased expression of NPNT in LS is correlated with cancer protection.

METHODS:

Basal and IGF1-stimulated NPNT expression were assessed in LS lymphoblastoid cells as well as in human breast and prostate cancer cells. NPNT silencing experiments were conducted using siRNA methodology.

RESULTS:

We provide evidence that IGF1 stimulates NPNT expression in LS-derived lymphoblastoids and various cancer cell lines. In addition, we demonstrate that NPNT silencing results in diminished activation of the AKT and ERK1/2 pathways, with ensuing decreases in cellular proliferation.

CONCLUSIONS:

Our data identified the NPNT gene as a target for IGF1 action. The clinical implications of the functional and physical interactions between NPNT and the IGF1 pathway merit further investigation.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Fator de Crescimento Insulin-Like I / Transdução de Sinais / Proteínas da Matriz Extracelular / Proliferação de Células / Neoplasias Tipo de estudo: Diagnostic_studies / Prognostic_studies Limite: Humans Idioma: En Revista: Eur J Cancer Ano de publicação: 2020 Tipo de documento: Article País de afiliação: Israel

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Fator de Crescimento Insulin-Like I / Transdução de Sinais / Proteínas da Matriz Extracelular / Proliferação de Células / Neoplasias Tipo de estudo: Diagnostic_studies / Prognostic_studies Limite: Humans Idioma: En Revista: Eur J Cancer Ano de publicação: 2020 Tipo de documento: Article País de afiliação: Israel