Your browser doesn't support javascript.
loading
A Computerized Bioinspired Methodology for Lightweight and Reliable Neural Telemetry.
Adeluyi, Olufemi; Risco-Castillo, Miguel A; Liz Crespo, María; Cicuttin, Andres; Lee, Jeong-A.
Afiliação
  • Adeluyi O; Ministry of Communications and Digital Economy, Federal Secretariat, Abuja 900001, Nigeria.
  • Risco-Castillo MA; Engineering Physics, Department of Science, National University of Engineering, Av. Tupac Amaru 210, Cercado de Lima 15333, Peru.
  • Liz Crespo M; Multidisciplinary Lab, International Centre for Theoretical Physics, Via Beirut 31, 34100 Trieste, Italy.
  • Cicuttin A; Multidisciplinary Lab, International Centre for Theoretical Physics, Via Beirut 31, 34100 Trieste, Italy.
  • Lee JA; Department of Computer Engineering, Chosun University, 309 Pilmun-Daero, Dong-Gu, Gwangju 61452, Korea.
Sensors (Basel) ; 20(22)2020 Nov 12.
Article em En | MEDLINE | ID: mdl-33198191
Personalized health monitoring of neural signals usually results in a very large dataset, the processing and transmission of which require considerable energy, storage, and processing time. We present bioinspired electroceptive compressive sensing (BeCoS) as an approach for minimizing these penalties. It is a lightweight and reliable approach for the compression and transmission of neural signals inspired by active electroceptive sensing used by weakly electric fish. It uses a signature signal and a sensed pseudo-sparse differential signal to transmit and reconstruct the signals remotely. We have used EEG datasets to compare BeCoS with the block sparse Bayesian learning-bound optimization (BSBL-BO) technique-A popular compressive sensing technique used for low-energy wireless telemonitoring of EEG signals. We achieved average coherence, latency, compression ratio, and estimated per-epoch power values that were 35.38%, 62.85%, 53.26%, and 13 mW better than BSBL-BO, respectively, while structural similarity was only 6.295% worse. However, the original and reconstructed signals remain visually similar. BeCoS senses the signals as a derivative of a predefined signature signal resulting in a pseudo-sparse signal that significantly improves the efficiency of the monitoring process. The results show that BeCoS is a promising approach for the health monitoring of neural signals.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Telemetria / Processamento de Sinais Assistido por Computador / Compressão de Dados Idioma: En Revista: Sensors (Basel) Ano de publicação: 2020 Tipo de documento: Article País de afiliação: Nigéria

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Telemetria / Processamento de Sinais Assistido por Computador / Compressão de Dados Idioma: En Revista: Sensors (Basel) Ano de publicação: 2020 Tipo de documento: Article País de afiliação: Nigéria