Your browser doesn't support javascript.
loading
Replisome bypass of a protein-based R-loop block by Pif1.
Schauer, Grant D; Spenkelink, Lisanne M; Lewis, Jacob S; Yurieva, Olga; Mueller, Stefan H; van Oijen, Antoine M; O'Donnell, Michael E.
Afiliação
  • Schauer GD; Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, CO 80523; grant.schauer@colostate.edu vanoijen@uow.edu.au odonnel@rockefeller.edu.
  • Spenkelink LM; Molecular Horizons and School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, NSW 2522, Australia.
  • Lewis JS; Illawarra Health & Medical Research Institute, Wollongong, NSW 2522, Australia.
  • Yurieva O; Molecular Horizons and School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, NSW 2522, Australia.
  • Mueller SH; Illawarra Health & Medical Research Institute, Wollongong, NSW 2522, Australia.
  • van Oijen AM; HHMI, Rockefeller University, New York, NY 10065.
  • O'Donnell ME; Laboratory of DNA Replication, Rockefeller University, New York, NY 10065.
Proc Natl Acad Sci U S A ; 117(48): 30354-30361, 2020 12 01.
Article em En | MEDLINE | ID: mdl-33199603
ABSTRACT
Efficient and faithful replication of the genome is essential to maintain genome stability. Replication is carried out by a multiprotein complex called the replisome, which encounters numerous obstacles to its progression. Failure to bypass these obstacles results in genome instability and may facilitate errors leading to disease. Cells use accessory helicases that help the replisome bypass difficult barriers. All eukaryotes contain the accessory helicase Pif1, which tracks in a 5'-3' direction on single-stranded DNA and plays a role in genome maintenance processes. Here, we reveal a previously unknown role for Pif1 in replication barrier bypass. We use an in vitro reconstituted Saccharomyces cerevisiae replisome to demonstrate that Pif1 enables the replisome to bypass an inactive (i.e., dead) Cas9 (dCas9) R-loop barrier. Interestingly, dCas9 R-loops targeted to either strand are bypassed with similar efficiency. Furthermore, we employed a single-molecule fluorescence visualization technique to show that Pif1 facilitates this bypass by enabling the simultaneous removal of the dCas9 protein and the R-loop. We propose that Pif1 is a general displacement helicase for replication bypass of both R-loops and protein blocks.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: DNA / Proteínas de Ligação a Telômeros / Replicação do DNA / Estruturas R-Loop Tipo de estudo: Prognostic_studies Idioma: En Revista: Proc Natl Acad Sci U S A Ano de publicação: 2020 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: DNA / Proteínas de Ligação a Telômeros / Replicação do DNA / Estruturas R-Loop Tipo de estudo: Prognostic_studies Idioma: En Revista: Proc Natl Acad Sci U S A Ano de publicação: 2020 Tipo de documento: Article