Your browser doesn't support javascript.
loading
Detection of large extracellular silver nanoparticle rings observed during mitosis using darkfield microscopy.
Zucker, Robert M; Ortenzio, Jayna; Degn, Laura L; Boyes, William K.
Afiliação
  • Zucker RM; U.S. Environmental Protection Agency, Office of Research and Development, Center for Public Health and Environmental Assessment, Public Health and Integrated Toxicology Division, Reproductive and Developmental Toxicology Branch, Research Triangle Park, Durham, NC, United States of America.
  • Ortenzio J; U.S. Environmental Protection Agency, Office of Research and Development, Center for Public Health and Environmental Assessment, Public Health and Integrated Toxicology Division, Reproductive and Developmental Toxicology Branch, Research Triangle Park, Durham, NC, United States of America.
  • Degn LL; U.S. Environmental Protection Agency, Office of Research and Development, Center for Public Health and Environmental Assessment, Public Health and Integrated Toxicology Division, Reproductive and Developmental Toxicology Branch, Research Triangle Park, Durham, NC, United States of America.
  • Boyes WK; U.S. Environmental Protection Agency, Office of Research and Development, Center for Public Health and Environmental Assessment, Public Health and Integrated Toxicology Division, Reproductive and Developmental Toxicology Branch, Research Triangle Park, Durham, NC, United States of America.
PLoS One ; 15(12): e0240268, 2020.
Article em En | MEDLINE | ID: mdl-33259485
ABSTRACT
During studies on the absorption and interactions between silver nanoparticles and mammalian cells grown in vitro it was observed that large extracellular rings of silver nanoparticles were deposited on the microscope slide, many located near post-mitotic cells. Silver nanoparticles (AgNP, 80nm), coated with citrate, were incubated at concentrations of 0.3 to 30 µg/ml with a human-derived culture of retinal pigment epithelial cells (ARPE-19) and observed using darkfield and fluorescent microscopy, 24 h after treatment. Approximately cell-sized extracellular rings of deposited AgNP were observed on the slides among a field of dispersed individual AgNP. The mean diameter of 45 nanoparticles circles was 62.5 +/-12 microns. Ring structures were frequently observed near what appeared to be post-mitotic daughter cells, giving rise to the possibility that cell membrane fragments were deposited on the slide during mitosis, and those fragments selectively attracted and retained silver nanoparticles from suspension in the cell culture medium. These circular structures were observable for the following technical reasons 1) darkfield microscope could observe single nanoparticles below 100 nm in size, 2) a large concentration (108 and 109) of nanoparticles was used in these experiments 3) negatively charged nanoparticles were attracted to adhesion membrane proteins remaining on the slide from mitosis. The observation of silver nanoparticles attracted to apparent remnants of cellular mitosis could be a useful tool for the study of normal and abnormal mitosis.
Assuntos

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Prata / Nanopartículas Metálicas / Mitose Tipo de estudo: Diagnostic_studies Limite: Humans Idioma: En Revista: PLoS One Assunto da revista: CIENCIA / MEDICINA Ano de publicação: 2020 Tipo de documento: Article País de afiliação: Estados Unidos

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Prata / Nanopartículas Metálicas / Mitose Tipo de estudo: Diagnostic_studies Limite: Humans Idioma: En Revista: PLoS One Assunto da revista: CIENCIA / MEDICINA Ano de publicação: 2020 Tipo de documento: Article País de afiliação: Estados Unidos