Your browser doesn't support javascript.
loading
Vector-based kernel weighting: A simple estimator for improving precision and bias of average treatment effects in multiple treatment settings.
Garrido, Melissa M; Lum, Jessica; Pizer, Steven D.
Afiliação
  • Garrido MM; Partnered Evidence-based Policy Resource Center, Boston VA Healthcare System, Boston, Massachusetts, USA.
  • Lum J; Department of Health Law, Policy and Management, Boston University School of Public Health, Boston, Massachusetts, USA.
  • Pizer SD; Partnered Evidence-based Policy Resource Center, Boston VA Healthcare System, Boston, Massachusetts, USA.
Stat Med ; 40(5): 1204-1223, 2021 02 28.
Article em En | MEDLINE | ID: mdl-33327037
Treatment effect estimation must account for observed confounding, in which factors affect treatment assignment and outcomes simultaneously. Ignoring observed confounding risks concluding that a helpful treatment is not beneficial or that a treatment is safe when actually harmful. Propensity score matching or weighting adjusts for observed confounding, but the best way to use propensity scores for multiple treatments is unknown. It is unclear when choice of a different weighting or matching strategy leads to divergent inferences. We used Monte Carlo simulations (1000 replications) to examine sensitivity of multivalued treatment inferences to propensity score weighting or matching strategies. We consider five variants of propensity score adjustment: inverse probability of treatment weights, generalized propensity score matching, kernel weights (KW), vector matching, and a new hybrid that is easily implemented-vector-based kernel weighting (VBKW). VBKW matches observations with similar propensity score vectors, assigning greater KW to observations with similar probabilities within a given bandwidth. We varied degree of propensity score model misspecification, sample size, treatment effect heterogeneity, initial covariate imbalance, and sample distribution across treatment groups. We evaluated sensitivity of results to propensity score estimation technique (multinomial logit or multinomial probit). Across simulations, VBKW performed equally or better than the other methods in terms of bias, efficiency, and covariate balance measured via prognostic scores. Our simulations suggest that VBKW is amenable to full automation and is less sensitive to PS model misspecification than other methods used to account for observed confounding in multivalued treatment analyses.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Simulação por Computador Tipo de estudo: Health_economic_evaluation / Prognostic_studies Limite: Humans Idioma: En Revista: Stat Med Ano de publicação: 2021 Tipo de documento: Article País de afiliação: Estados Unidos

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Simulação por Computador Tipo de estudo: Health_economic_evaluation / Prognostic_studies Limite: Humans Idioma: En Revista: Stat Med Ano de publicação: 2021 Tipo de documento: Article País de afiliação: Estados Unidos