Your browser doesn't support javascript.
loading
Vaccine Formulation and Optimization for Human Herpes Virus-5 through an Immunoinformatics Framework.
Kumar, Neeraj; Sood, Damini; Chandra, Ramesh.
Afiliação
  • Kumar N; Department of Chemistry, University of Delhi, Delhi 110007, India.
  • Sood D; Department of Chemistry, University of Delhi, Delhi 110007, India.
  • Chandra R; Department of Chemistry, University of Delhi, Delhi 110007, India.
ACS Pharmacol Transl Sci ; 3(6): 1318-1329, 2020 Dec 11.
Article em En | MEDLINE | ID: mdl-33344905
In the current situation, the importance of vaccines for viral diseases has become the need of the hour. The scientific community in the field of virology has taken it upon themselves to develop vaccines for viral infections before an epidemic or pandemic situation arises. Human herpes virus-5 is an emerging situation that has alarming cases with major health concerns, including congenital impairments and infections leading to cancer states. Vaccination is the route most likely to succeed in the battleground with viral infections and consequences. Hence in the present manuscript, we have formulated the multiepitope subunit vaccine and optimized it with the advanced computational immunological framework. As a result, we report the subunit vaccine for HHV-5, comprised of promiscuous cytotoxic T-lymphocytes epitopes, helper T-lymphocytes, and B-cell epitopes engineered with putative adjuvants to ensure the strong immune response. The formulated subunit vaccine depicted high antigenicity and immunogenicity along with sustainable physicochemical characteristics. Molecular dynamics simulation analyses revealed the strong binding of the vaccine with MHC receptors (MHC-1 and MHC-2) and the virus progression specific membrane receptor TLR2 for a 100 ns MD simulation run. The interacting trajectory analysis of the vaccine showed stable binding with minimal deviations through RMSD, RMSF, and secondary structure confinement plot analyses for a long span of 100 ns. Interestingly, the vaccine showed robust immune response statistics for a prolonged time with evoking T-cell and B-cell populations with other vital players of the immune system, through the machine learning-based immune simulation approach. This study paved the way to a multiepitope vaccine for HHV-5 employing the immunoinformatics networks.

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Revista: ACS Pharmacol Transl Sci Ano de publicação: 2020 Tipo de documento: Article País de afiliação: Índia

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Revista: ACS Pharmacol Transl Sci Ano de publicação: 2020 Tipo de documento: Article País de afiliação: Índia