Your browser doesn't support javascript.
loading
Intrinsic Antibacterial Borosilicate Glasses for Bone Tissue Engineering Applications.
Fernandes, João S; Martins, Margarida; Neves, Nuno M; Fernandes, Maria H V; Reis, Rui L; Pires, Ricardo A.
Afiliação
  • Fernandes JS; 3B's Research Group - Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark-Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017 Barco GMR, Portugal.
  • Martins M; ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, 4710-057 Portugal.
  • Neves NM; 3B's Research Group - Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark-Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017 Barco GMR, Portugal.
  • Fernandes MHV; ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, 4710-057 Portugal.
  • Reis RL; 3B's Research Group - Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark-Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017 Barco GMR, Portugal.
  • Pires RA; ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, 4710-057 Portugal.
ACS Biomater Sci Eng ; 2(7): 1143-1150, 2016 Jul 11.
Article em En | MEDLINE | ID: mdl-33465872
ABSTRACT
Three novel borosilicate bioactive glasses (BBGs) were prepared and used to investigate their bioactive and antibacterial properties. The BBGs were prepared by melt-quenching using different glass modifiers, i.e. Mg2+, Ca2+, and Sr2+, and their amorphous nature was confirmed by X-ray diffraction. Scanning electron microscopy with energy dispersive X-ray spectroscopy allowed the visualization of apatite-like structures upon 7 days of immersion in simulated body fluid. BBG-Ca generated surface structures with a Ca/P ratio ≈1.67, while the surface of the BBG-Sr was populated with structures with a Sr/P ratio ≈1.7. Moreover, bacterial tests showed that the BBG-Mg and BBG-Sr glasses (at concentrations of 9, 18, 36, and 72 mg/mL) present antibacterial characteristics. In particular, BBG-Sr, at concentrations of 9 mg/mL, exhibited bacteriostatic activity against Pseudomonas aeruginosa, and at concentrations ≥18 mg/mL it was able to eradicate this bacterium. These results evidence an antibacterial activity dependent on the BBGs composition, concentration, and bacterial species. Cellular studies showed that the developed BBGs do not present a statistically significant cytotoxic effect against Saos-2 cells after 3 days of culture, showing better performance (in the cases of BBG-Ca and BBG-Sr) than commercial 45S5 Bioglass up to 7 days of culture. Overall, this study demonstrates that BBGs can be effectively designed to combine bioactivity and intrinsic antibacterial activity targeting bone tissue engineering applications.
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Revista: ACS Biomater Sci Eng Ano de publicação: 2016 Tipo de documento: Article País de afiliação: Portugal

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Revista: ACS Biomater Sci Eng Ano de publicação: 2016 Tipo de documento: Article País de afiliação: Portugal