A novel all-in-one conditional knockout system uncovered an essential role of DDX1 in ribosomal RNA processing.
Nucleic Acids Res
; 49(7): e40, 2021 04 19.
Article
em En
| MEDLINE
| ID: mdl-33503245
Generation of conditional knockout (cKO) and various gene-modified cells is laborious and time-consuming. Here, we established an all-in-one cKO system, which enables highly efficient generation of cKO cells and simultaneous gene modifications, including epitope tagging and reporter gene knock-in. We applied this system to mouse embryonic stem cells (ESCs) and generated RNA helicase Ddx1 cKO ESCs. The targeted cells displayed endogenous promoter-driven EGFP and FLAG-tagged DDX1 expression, and they were converted to Ddx1 KO via FLP recombinase. We further established TetFE ESCs, which carried a reverse tetracycline transactivator (rtTA) expression cassette and a tetracycline response element (TRE)-regulated FLPERT2 cassette in the Gt(ROSA26)Sor locus for instant and tightly regulated induction of gene KO. By utilizing TetFE Ddx1F/F ESCs, we isolated highly pure Ddx1F/F and Ddx1-/- ESCs and found that loss of Ddx1 caused rRNA processing defects, thereby activating the ribosome stress-p53 pathway. We also demonstrated cKO of various genes in ESCs and homologous recombination-non-proficient human HT1080 cells. The frequency of cKO clones was remarkably high for both cell types and reached up to 96% when EGFP-positive clones were analyzed. This all-in-one cKO system will be a powerful tool for rapid and precise analyses of gene functions.
Texto completo:
1
Coleções:
01-internacional
Base de dados:
MEDLINE
Assunto principal:
RNA Ribossômico
/
RNA Helicases DEAD-box
/
Técnicas de Inativação de Genes
Limite:
Animals
/
Humans
Idioma:
En
Revista:
Nucleic Acids Res
Ano de publicação:
2021
Tipo de documento:
Article
País de afiliação:
Japão