Your browser doesn't support javascript.
loading
Structural Insights into Malic Enzyme Variants Favoring an Unnatural Redox Cofactor.
Liu, Yuxue; Guo, Xiaojia; Liu, Wujun; Wang, Junting; Kent Zhao, Zongbao.
Afiliação
  • Liu Y; College of Life Sciences, Henan Normal University, 46 East of Construction Road, Xinxiang, 453007, P. R. China.
  • Guo X; Division of Biotechnology, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, 116023, P. R. China.
  • Liu W; Division of Biotechnology, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, 116023, P. R. China.
  • Wang J; Division of Biotechnology, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, 116023, P. R. China.
  • Kent Zhao Z; Present address: Institute of Cancer Stem Cell, Dalian Medical University, Dalian, 116044, P. R. China.
Chembiochem ; 22(10): 1765-1768, 2021 05 14.
Article em En | MEDLINE | ID: mdl-33523590
ABSTRACT
The use of nicotinamide cytosine dinucleotide (NCD), a biocompatible nicotinamide adenosine dinucleotide (NAD) analogue, is of great scientific and biotechnological interest. Several redox enzymes have been devised to favor NCD, and have been successfully applied in creating NCD-dependent redox systems. However, molecular interactions between cofactor and protein have still to be disclosed in order to guide further engineering efforts. Here we report the structural analysis of an NCD-favoring malic enzyme (ME) variant derived from Escherichia coli. The X-ray crystal structure data revealed that the residues located at position 346 and 401 in ME acted as the "gatekeepers" of the adenine moiety binding cavity. When Arg346 was substituted with either acidic or aromatic residues, the corresponding mutants showed substantially reduced NCD preference. Inspired by these observations, we generated Lactobacillus helveticus derived d-lactate dehydrogenase variants at Ile177, the counterpart to Arg346 in ME, and found a similar trend in terms of cofactor preference changes. As many NAD-dependent oxidoreductases share key structural features, our results provide guidance for protein engineering to obtain more NCD-favoring variants.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Proteínas de Bactérias / Malato Desidrogenase / NAD Idioma: En Revista: Chembiochem Assunto da revista: BIOQUIMICA Ano de publicação: 2021 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Proteínas de Bactérias / Malato Desidrogenase / NAD Idioma: En Revista: Chembiochem Assunto da revista: BIOQUIMICA Ano de publicação: 2021 Tipo de documento: Article