Leveraging electronic health records data to predict multiple sclerosis disease activity.
Ann Clin Transl Neurol
; 8(4): 800-810, 2021 04.
Article
em En
| MEDLINE
| ID: mdl-33626237
OBJECTIVE: No relapse risk prediction tool is currently available to guide treatment selection for multiple sclerosis (MS). Leveraging electronic health record (EHR) data readily available at the point of care, we developed a clinical tool for predicting MS relapse risk. METHODS: Using data from a clinic-based research registry and linked EHR system between 2006 and 2016, we developed models predicting relapse events from the registry in a training set (n = 1435) and tested the model performance in an independent validation set of MS patients (n = 186). This iterative process identified prior 1-year relapse history as a key predictor of future relapse but ascertaining relapse history through the labor-intensive chart review is impractical. We pursued two-stage algorithm development: (1) L1 -regularized logistic regression (LASSO) to phenotype past 1-year relapse status from contemporaneous EHR data, (2) LASSO to predict future 1-year relapse risk using imputed prior 1-year relapse status and other algorithm-selected features. RESULTS: The final model, comprising age, disease duration, and imputed prior 1-year relapse history, achieved a predictive AUC and F score of 0.707 and 0.307, respectively. The performance was significantly better than the baseline model (age, sex, race/ethnicity, and disease duration) and noninferior to a model containing actual prior 1-year relapse history. The predicted risk probability declined with disease duration and age. CONCLUSION: Our novel machine-learning algorithm predicts 1-year MS relapse with accuracy comparable to other clinical prediction tools and has applicability at the point of care. This EHR-based two-stage approach of outcome prediction may have application to neurological disease beyond MS.
Texto completo:
1
Coleções:
01-internacional
Base de dados:
MEDLINE
Assunto principal:
Sistema de Registros
/
Registros Eletrônicos de Saúde
/
Aprendizado de Máquina
/
Esclerose Múltipla
Tipo de estudo:
Observational_studies
/
Prognostic_studies
/
Risk_factors_studies
Limite:
Adult
/
Female
/
Humans
/
Male
/
Middle aged
Idioma:
En
Revista:
Ann Clin Transl Neurol
Ano de publicação:
2021
Tipo de documento:
Article
País de afiliação:
Estados Unidos