Your browser doesn't support javascript.
loading
Biofuels for a sustainable future.
Liu, Yuzhong; Cruz-Morales, Pablo; Zargar, Amin; Belcher, Michael S; Pang, Bo; Englund, Elias; Dan, Qingyun; Yin, Kevin; Keasling, Jay D.
Afiliação
  • Liu Y; Joint BioEnergy Institute, Lawrence Berkeley National Laboratory, Emeryville, CA, USA; Division of Biological Systems and Engineering, Lawrence Berkeley National Laboratory, Berkeley, CA, USA; California Institute for Quantitative Biosciences (QB3), University of California, Berkeley, Berkeley, CA,
  • Cruz-Morales P; Joint BioEnergy Institute, Lawrence Berkeley National Laboratory, Emeryville, CA, USA; Division of Biological Systems and Engineering, Lawrence Berkeley National Laboratory, Berkeley, CA, USA; California Institute for Quantitative Biosciences (QB3), University of California, Berkeley, Berkeley, CA,
  • Zargar A; Joint BioEnergy Institute, Lawrence Berkeley National Laboratory, Emeryville, CA, USA; Division of Biological Systems and Engineering, Lawrence Berkeley National Laboratory, Berkeley, CA, USA; California Institute for Quantitative Biosciences (QB3), University of California, Berkeley, Berkeley, CA,
  • Belcher MS; Joint BioEnergy Institute, Lawrence Berkeley National Laboratory, Emeryville, CA, USA; Division of Biological Systems and Engineering, Lawrence Berkeley National Laboratory, Berkeley, CA, USA; Department of Plant and Microbial Biology, University of California, Berkeley, Berkeley, CA, USA.
  • Pang B; Joint BioEnergy Institute, Lawrence Berkeley National Laboratory, Emeryville, CA, USA; Division of Biological Systems and Engineering, Lawrence Berkeley National Laboratory, Berkeley, CA, USA; California Institute for Quantitative Biosciences (QB3), University of California, Berkeley, Berkeley, CA,
  • Englund E; Joint BioEnergy Institute, Lawrence Berkeley National Laboratory, Emeryville, CA, USA; Division of Biological Systems and Engineering, Lawrence Berkeley National Laboratory, Berkeley, CA, USA; California Institute for Quantitative Biosciences (QB3), University of California, Berkeley, Berkeley, CA,
  • Dan Q; Joint BioEnergy Institute, Lawrence Berkeley National Laboratory, Emeryville, CA, USA; Division of Biological Systems and Engineering, Lawrence Berkeley National Laboratory, Berkeley, CA, USA; California Institute for Quantitative Biosciences (QB3), University of California, Berkeley, Berkeley, CA,
  • Yin K; Joint BioEnergy Institute, Lawrence Berkeley National Laboratory, Emeryville, CA, USA; Division of Biological Systems and Engineering, Lawrence Berkeley National Laboratory, Berkeley, CA, USA; Department of Plant and Microbial Biology, University of California, Berkeley, Berkeley, CA, USA.
  • Keasling JD; Joint BioEnergy Institute, Lawrence Berkeley National Laboratory, Emeryville, CA, USA; Division of Biological Systems and Engineering, Lawrence Berkeley National Laboratory, Berkeley, CA, USA; California Institute for Quantitative Biosciences (QB3), University of California, Berkeley, Berkeley, CA,
Cell ; 184(6): 1636-1647, 2021 03 18.
Article em En | MEDLINE | ID: mdl-33639085
ABSTRACT
Rapid increases of energy consumption and human dependency on fossil fuels have led to the accumulation of greenhouse gases and consequently, climate change. As such, major efforts have been taken to develop, test, and adopt clean renewable fuel alternatives. Production of bioethanol and biodiesel from crops is well developed, while other feedstock resources and processes have also shown high potential to provide efficient and cost-effective alternatives, such as landfill and plastic waste conversion, algal photosynthesis, as well as electrochemical carbon fixation. In addition, the downstream microbial fermentation can be further engineered to not only increase the product yield but also expand the chemical space of biofuels through the rational design and fine-tuning of biosynthetic pathways toward the realization of "designer fuels" and diverse future applications.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Biocombustíveis / Desenvolvimento Sustentável Limite: Humans Idioma: En Revista: Cell Ano de publicação: 2021 Tipo de documento: Article País de afiliação: Canadá

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Biocombustíveis / Desenvolvimento Sustentável Limite: Humans Idioma: En Revista: Cell Ano de publicação: 2021 Tipo de documento: Article País de afiliação: Canadá