Your browser doesn't support javascript.
loading
Toxicity mitigation by N-acetylcysteine and synergistic toxic effect of nano and bulk ZnO to Panagrellus redivivus.
Kiss, Lola Virág; Sávoly, Zoltán; Ács, András; Seres, Anikó; Nagy, Péter István.
Afiliação
  • Kiss LV; Department of Zoology and Animal Ecology, Szent István University, Gödöllo, Hungary. lolavirag.kiss@gmail.com.
  • Sávoly Z; , Budapest, Hungary.
  • Ács A; Department of Aquaculture, Institute for Conservation of Natural Resources, Faculty of Agricultural and Environmental Sciences, Szent István University, Gödöllo, Hungary.
  • Seres A; Department of Zoology and Animal Ecology, Szent István University, Gödöllo, Hungary.
  • Nagy PI; Department of Zoology and Animal Ecology, Szent István University, Gödöllo, Hungary.
Environ Sci Pollut Res Int ; 28(26): 34436-34449, 2021 Jul.
Article em En | MEDLINE | ID: mdl-33651295
ABSTRACT
To better understand the nanosize-relevant toxic effects and underlying mechanisms, N-acetylcysteine (NAC), as a mitigation agent, an ionic form of Zn (ZnCl2), and the binary mixture of ZnO with different particle sizes (15 nm and 140 nm), was used in toxicity assays with the nematode Panagrellus redivivus. The ZnCl2 concentrations were applied to show the amount of dissolved Zn ions present in the test system. Reactive oxygen species (ROS) measuring method was developed to fit the used test system. Our studies have shown that NAC can mitigate the toxic effects of both studied particle sizes. In the applied concentrations, ZnCl2 was less toxic than both of the ZnO particles. This finding indicates that not only ions and ROS produced by the dissolution are behind the toxic effects of the ZnO NPs, but also other particle size-dependent toxic effects, like the spontaneous ROS generation, are also relevant. When the two materials were applied in binary mixtures, the toxic effects increased significantly, and the dissolved zinc content and the ROS generation also increased. It is assumed that the chemical and physical properties of the materials have been mutually reinforcing to form a more reactive mixture that is more toxic to the P. redivivus test organism. Our findings demonstrate the importance of using mitigation agent and mixtures to evaluate the size-dependent toxicity of the ZnO.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Óxido de Zinco / Nanopartículas Metálicas Idioma: En Revista: Environ Sci Pollut Res Int Assunto da revista: SAUDE AMBIENTAL / TOXICOLOGIA Ano de publicação: 2021 Tipo de documento: Article País de afiliação: Hungria

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Óxido de Zinco / Nanopartículas Metálicas Idioma: En Revista: Environ Sci Pollut Res Int Assunto da revista: SAUDE AMBIENTAL / TOXICOLOGIA Ano de publicação: 2021 Tipo de documento: Article País de afiliação: Hungria