Your browser doesn't support javascript.
loading
RNA-seq and GSEA identifies suppression of ligand-gated chloride efflux channels as the major gene pathway contributing to form deprivation myopia.
Vocale, Loretta Giummarra; Crewther, Sheila; Riddell, Nina; Hall, Nathan E; Murphy, Melanie; Crewther, David.
Afiliação
  • Vocale LG; Department of Psychology and Counselling, La Trobe University, Melbourne, VIC, Australia. Loretta.vocale@rmit.edu.au.
  • Crewther S; School of Health and Biomedical Sciences, RMIT, Melbourne, VIC, Australia. Loretta.vocale@rmit.edu.au.
  • Riddell N; Department of Psychology and Counselling, La Trobe University, Melbourne, VIC, Australia.
  • Hall NE; Department of Psychology and Counselling, La Trobe University, Melbourne, VIC, Australia.
  • Murphy M; Department of Psychology and Counselling, La Trobe University, Melbourne, VIC, Australia.
  • Crewther D; Department of Animal, Plant and Soil Sciences, La Trobe University, Melbourne, VIC, Australia.
Sci Rep ; 11(1): 5280, 2021 03 05.
Article em En | MEDLINE | ID: mdl-33674625
Currently there is no consensus regarding the aetiology of the excessive ocular volume that characterizes high myopia. Thus, we aimed to test whether the gene pathways identified by gene set enrichment analysis of RNA-seq transcriptomics refutes the predictions of the Retinal Ion Driven Efflux (RIDE) hypothesis when applied to the induction of form-deprivation myopia (FDM) and subsequent recovery (post-occluder removal). We found that the induction of profound FDM led to significant suppression in the ligand-gated chloride ion channel transport pathway via suppression of glycine, GABAA and GABAC ionotropic receptors. Post-occluder removal for short term recovery from FDM of 6 h and 24 h, induced significant upregulation of the gene families linked to cone receptor phototransduction, mitochondrial energy, and complement pathways. These findings support a model of form deprivation myopia as a Cl- ion driven adaptive fluid response to the modulation of the visual signal cascade by form deprivation that in turn affects the resultant ionic environment of the outer and inner retinal tissues, axial and vitreal elongation as predicted by the RIDE model. Occluder removal and return to normal light conditions led to return to more normal upregulation of phototransduction, slowed growth rate, refractive recovery and apparent return towards physiological homeostasis.
Assuntos

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Transdução de Sinais / Canais de Cloreto / Transcriptoma / RNA-Seq / Miopia Tipo de estudo: Prognostic_studies Limite: Animals Idioma: En Revista: Sci Rep Ano de publicação: 2021 Tipo de documento: Article País de afiliação: Austrália

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Transdução de Sinais / Canais de Cloreto / Transcriptoma / RNA-Seq / Miopia Tipo de estudo: Prognostic_studies Limite: Animals Idioma: En Revista: Sci Rep Ano de publicação: 2021 Tipo de documento: Article País de afiliação: Austrália