Your browser doesn't support javascript.
loading
Increased HSF1 Promotes Infiltration and Metastasis in Cervical Cancer via Enhancing MTDH-VEGF-C Expression.
Shi, Xueyan; Deng, Zhenghao; Wang, Shouman; Zhao, Shuai; Xiao, Lan; Zou, Jiang; Li, Tao; Tan, Sichuang; Tan, SipAin; Xiao, Xianzhong.
Afiliação
  • Shi X; Sepsis Translational Medicine, Key Laboratory of Hunan Province, Xiangya School of Medicine, Central South University, Changsha, Hunan, 410008, People's Republic of China.
  • Deng Z; Department of Pathology, Xiangya School of Medicine, Central South University, Changsha, Hunan, 410008, People's Republic of China.
  • Wang S; Department of Breast Surgery, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, People's Republic of China.
  • Zhao S; Sepsis Translational Medicine, Key Laboratory of Hunan Province, Xiangya School of Medicine, Central South University, Changsha, Hunan, 410008, People's Republic of China.
  • Xiao L; Department of Pathology, Tianjin Medical University Cancer Institute and Hospital, Tianjin, 300060, People's Republic of China.
  • Zou J; Department of Traditional Chinese Medicine, The Third Xiangya Hospital, Central South University, Changsha, Hunan, 410008, People's Republic of China.
  • Li T; Sepsis Translational Medicine, Key Laboratory of Hunan Province, Xiangya School of Medicine, Central South University, Changsha, Hunan, 410008, People's Republic of China.
  • Tan S; Sepsis Translational Medicine, Key Laboratory of Hunan Province, Xiangya School of Medicine, Central South University, Changsha, Hunan, 410008, People's Republic of China.
  • Tan S; Department of Thoracic Surgery, Second Xiangya Hospital, Central South University, Changsha, Hunan, 410008, People's Republic of China.
  • Xiao X; Sepsis Translational Medicine, Key Laboratory of Hunan Province, Xiangya School of Medicine, Central South University, Changsha, Hunan, 410008, People's Republic of China.
Onco Targets Ther ; 14: 1305-1315, 2021.
Article em En | MEDLINE | ID: mdl-33679132
ABSTRACT

PURPOSE:

To explore the molecular mechanism of promoting cervical cancer by HSF1 in vivo and in vitro.

METHODS:

The expression of HSF1 in 110 paraffin-embedded cervical cancer sections of different grades was examined via immunohistochemistry analyses. Expression of HSF1 downstream targets Metadherin (MTDH), VEGF-C and CD31 were studied using immunohistochemistry analyses. HSF1 transcriptional activity in the MTDH promoter region was detected by EMSA, CHIP and luciferase. Cell proliferation and clonality were detected by MTT and clonal formation assay. Cell migration and invasion ability were investigated by scratch analysis and transwell assay. HSF1-mediated tumorigenesis in vivo was examined in xenograft models.

RESULTS:

HSF1 expression of cervical cancer cell line was increased compared to normal human cervical tissues. HSF1 enhanced the expression of MTDH, VEGF-C and CD31. HSF1 can combine with MTDH promoter to promote the expression of MTDH. HSF1 enhanced HeLa cell proliferation and clone formation. Furthermore, HSF1 increased HeLa cells migration and invasion in vitro. In the transplanted tumor model, HSF1 inhibited tumor growth in vivo after interference, and reduced the expression of MTDH, VEGF-C and CD31.

DISCUSSION:

HSF1 can promote the proliferation, metastasis and invasion of cervical cancer.
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Revista: Onco Targets Ther Ano de publicação: 2021 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Revista: Onco Targets Ther Ano de publicação: 2021 Tipo de documento: Article