Your browser doesn't support javascript.
loading
DECO: a framework for jointly analyzing de novo and rare case/control variants, and biological pathways.
Nguyen, Tan-Hoang; He, Xin; Brown, Ruth C; Webb, Bradley T; Kendler, Kenneth S; Vladimirov, Vladimir I; Riley, Brien P; Bacanu, Silviu-Alin.
Afiliação
  • Nguyen TH; Virginia Institute for Psychiatric and Behavioral Genetics, Department of Psychiatry, Virginia Commonwealth University, Richmond, VA, USA.
  • He X; The Department of Human Genetics, University of Chicago, IL 60637, USA; Grossman Institute for Neuroscience, Quantitative Biology and Human Behavior, University of Chicago, Chicago, IL 60637, USA.
  • Brown RC; Virginia Institute for Psychiatric and Behavioral Genetics, Department of Psychiatry, Virginia Commonwealth University, Richmond, VA, USA.
  • Webb BT; Virginia Institute for Psychiatric and Behavioral Genetics, Department of Psychiatry, Virginia Commonwealth University, Richmond, VA, USA.
  • Kendler KS; Virginia Institute for Psychiatric and Behavioral Genetics, Department of Psychiatry, Virginia Commonwealth University, Richmond, VA, USA.
  • Vladimirov VI; Virginia Institute for Psychiatric and Behavioral Genetics, Department of Psychiatry, Virginia Commonwealth University, Richmond, VA, USA; Department of Psychiatry & Behavioral Sciences, College of Medicine, Texas A&M University, College Station, TX, USA; and the Lieber Institute for Brain D
  • Riley BP; Virginia Institute for Psychiatric and Behavioral Genetics, Department of Psychiatry, Virginia Commonwealth University, Richmond, VA, USA.
  • Bacanu SA; Virginia Institute for Psychiatric and Behavioral Genetics, Department of Psychiatry, Virginia Commonwealth University, Richmond, VA, USA.
Brief Bioinform ; 22(5)2021 09 02.
Article em En | MEDLINE | ID: mdl-33791774
MOTIVATION: Rare variant-based analyses are beginning to identify risk genes for neuropsychiatric disorders and other diseases. However, the identified genes only account for a fraction of predicted causal genes. Recent studies have shown that rare damaging variants are significantly enriched in specific gene-sets. Methods which are able to jointly model rare variants and gene-sets to identify enriched gene-sets and use these enriched gene-sets to prioritize additional risk genes could improve understanding of the genetic architecture of diseases. RESULTS: We propose DECO (Integrated analysis of de novo mutations, rare case/control variants and omics information via gene-sets), an integrated method for rare-variant and gene-set analysis. The method can (i) test the enrichment of gene-sets directly within the statistical model, and (ii) use enriched gene-sets to rank existing genes and prioritize additional risk genes for tested disorders. In simulations, DECO performs better than a homologous method that uses only variant data. To demonstrate the application of the proposed protocol, we have applied this approach to rare-variant datasets of schizophrenia. Compared with a method which only uses variant information, DECO is able to prioritize additional risk genes. AVAILABILITY: DECO can be used to analyze rare-variants and biological pathways or cell types for any disease. The package is available on Github https://github.com/hoangtn/DECO.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Esquizofrenia / Predisposição Genética para Doença / Biologia de Sistemas / Transtornos do Neurodesenvolvimento / Mutação Tipo de estudo: Observational_studies / Prognostic_studies / Risk_factors_studies Limite: Humans Idioma: En Revista: Brief Bioinform Assunto da revista: BIOLOGIA / INFORMATICA MEDICA Ano de publicação: 2021 Tipo de documento: Article País de afiliação: Estados Unidos

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Esquizofrenia / Predisposição Genética para Doença / Biologia de Sistemas / Transtornos do Neurodesenvolvimento / Mutação Tipo de estudo: Observational_studies / Prognostic_studies / Risk_factors_studies Limite: Humans Idioma: En Revista: Brief Bioinform Assunto da revista: BIOLOGIA / INFORMATICA MEDICA Ano de publicação: 2021 Tipo de documento: Article País de afiliação: Estados Unidos