Your browser doesn't support javascript.
loading
Chemical Insights into Interfacial Effects in Inorganic Nanomaterials.
Hu, Chengyi; Chen, Ruihao; Zheng, Nanfeng.
Afiliação
  • Hu C; State Key Laboratory for Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, National and Local Joint Engineering Research Center for Preparation Technology of Nanomaterials, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China.
  • Chen R; State Key Laboratory for Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, National and Local Joint Engineering Research Center for Preparation Technology of Nanomaterials, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China.
  • Zheng N; State Key Laboratory for Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, National and Local Joint Engineering Research Center for Preparation Technology of Nanomaterials, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China.
Adv Mater ; 33(50): e2006159, 2021 Dec.
Article em En | MEDLINE | ID: mdl-33829578
The interfaces between inorganic functional nanomaterials and their surface modifiers play important roles in determining their chemical and physical properties. In numerous situations, interfaces created by organic ligands or secondary inorganic components on inorganic nanomaterials induce significant effects to promote their performances. However, it still remains challenging to understand those interfacial effects at the molecular level. Herein, strategies via the design of model inorganic nanomaterials with well-defined and detectable interfaces to simplify the investigation of interfacial effects in inorganic nanomaterials are summarized. While atomically precise metal nanoclusters enable "seeing" how organic ligands are coordinated on metal surface to create nanoscale metal-organic interfaces, ultrathin low-dimensional nanomaterials modified with organic ligands make it possible to extract the metal-organic interface structure from the average signal to investigate how steric and electronic effects enhance catalysis. The molecular mechanisms of the interfacial effects in supported metal catalysts are disclosed by designing two unique structures of supported catalysts. The interfacial engineering approach will be further extended to optimize the performance and stability of perovskite solar cells. Finally, a perspective on the development of operando characterization techniques is provided to track the dynamic interfacial structures during catalysis.
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Revista: Adv Mater Assunto da revista: BIOFISICA / QUIMICA Ano de publicação: 2021 Tipo de documento: Article País de afiliação: China

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Revista: Adv Mater Assunto da revista: BIOFISICA / QUIMICA Ano de publicação: 2021 Tipo de documento: Article País de afiliação: China