Your browser doesn't support javascript.
loading
Low-level variant calling for non-matched samples using a position-based and nucleotide-specific approach.
Dudley, Jeffrey N; Hong, Celine S; Hawari, Marwan A; Shwetar, Jasmine; Sapp, Julie C; Lack, Justin; Shiferaw, Henoke; Johnston, Jennifer J; Biesecker, Leslie G.
Afiliação
  • Dudley JN; National Human Genome Research Institute, National Institutes of Health, 50 South Drive Room 5140, Bethesda, MD, 20892, USA.
  • Hong CS; National Human Genome Research Institute, National Institutes of Health, 50 South Drive Room 5140, Bethesda, MD, 20892, USA. celine.hong@nih.gov.
  • Hawari MA; National Human Genome Research Institute, National Institutes of Health, 50 South Drive Room 5140, Bethesda, MD, 20892, USA.
  • Shwetar J; National Human Genome Research Institute, National Institutes of Health, 50 South Drive Room 5140, Bethesda, MD, 20892, USA.
  • Sapp JC; National Human Genome Research Institute, National Institutes of Health, 50 South Drive Room 5140, Bethesda, MD, 20892, USA.
  • Lack J; NIAID Collaborative Bioinformatics Resource, National Institutes of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA.
  • Shiferaw H; Advanced Biomedical Computational Science, Frederick National Laboratory for Cancer Research, Frederick, MD, USA.
  • Biesecker LG; National Human Genome Research Institute, National Institutes of Health, 50 South Drive Room 5140, Bethesda, MD, 20892, USA.
BMC Bioinformatics ; 22(1): 181, 2021 Apr 08.
Article em En | MEDLINE | ID: mdl-33832433
BACKGROUND: The widespread use of next-generation sequencing has identified an important role for somatic mosaicism in many diseases. However, detecting low-level mosaic variants from next-generation sequencing data remains challenging. RESULTS: Here, we present a method for Position-Based Variant Identification (PBVI) that uses empirically-derived distributions of alternate nucleotides from a control dataset. We modeled this approach on 11 segmental overgrowth genes. We show that this method improves detection of single nucleotide mosaic variants of 0.01-0.05 variant allele fraction compared to other low-level variant callers. At depths of 600 × and 1200 ×, we observed > 85% and > 95% sensitivity, respectively. In a cohort of 26 individuals with somatic overgrowth disorders PBVI showed improved signal to noise, identifying pathogenic variants in 17 individuals. CONCLUSION: PBVI can facilitate identification of low-level mosaic variants thus increasing the utility of next-generation sequencing data for research and diagnostic purposes.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Sequenciamento de Nucleotídeos em Larga Escala / Nucleotídeos Tipo de estudo: Etiology_studies / Incidence_studies / Observational_studies / Prognostic_studies / Risk_factors_studies Limite: Humans Idioma: En Revista: BMC Bioinformatics Assunto da revista: INFORMATICA MEDICA Ano de publicação: 2021 Tipo de documento: Article País de afiliação: Estados Unidos

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Sequenciamento de Nucleotídeos em Larga Escala / Nucleotídeos Tipo de estudo: Etiology_studies / Incidence_studies / Observational_studies / Prognostic_studies / Risk_factors_studies Limite: Humans Idioma: En Revista: BMC Bioinformatics Assunto da revista: INFORMATICA MEDICA Ano de publicação: 2021 Tipo de documento: Article País de afiliação: Estados Unidos