Utilization of GelMA with phosphate glass fibers for glial cell alignment.
J Biomed Mater Res A
; 109(11): 2212-2224, 2021 11.
Article
em En
| MEDLINE
| ID: mdl-33960663
Glial cell alignment in tissue engineered constructs is essential for achieving functional outcomes in neural recovery. While gelatin methacrylate (GelMA) hydrogel offers superior biocompatibility along with permissive structure and tailorable mechanical properties, phosphate glass fibers (PGFs) can provide physical cues for directionality of neural growth. Aligned PGFs were fabricated by a melt quenching and fiber drawing method and utilized with synthesized GelMA hydrogel. The mechanical properties of GelMA and biocompatibility of the GelMA-PGFs composite were investigated in vitro using rat glial cells. GelMA with 86% methacrylation degree were photo-crosslinked using 0.1%wt photo-initiator (PI). Photocrosslinking under UV exposure for 60 s was used to produce hydrogels (GelMA-60). PGFs were introduced into the GelMA before crosslinking. Storage modulus and loss modulus of GelMA-60 was 24.73 ± 2.52 and 1.08 ± 0.23 kN/m2 , respectively. Increased cell alignment was observed in GelMA-PGFs compared with GelMA hydrogel alone. These findings suggest GelMA-PGFs can provide glial cells with physical cues necessary to achieve cell alignment. This approach could further be used to achieve glial cell alignment in bioengineered constructs designed to bridge damaged nerve tissue.
Palavras-chave
Texto completo:
1
Coleções:
01-internacional
Base de dados:
MEDLINE
Assunto principal:
Neuroglia
/
Engenharia Tecidual
/
Alicerces Teciduais
/
Gelatina
/
Vidro
/
Metacrilatos
Limite:
Animals
Idioma:
En
Revista:
J Biomed Mater Res A
Assunto da revista:
ENGENHARIA BIOMEDICA
Ano de publicação:
2021
Tipo de documento:
Article