Your browser doesn't support javascript.
loading
Simultaneous modeling of detection rate and exposure concentration using semi-continuous models to identify exposure determinants when left-censored data may be a true zero.
Friesen, Melissa C; Choo-Wosoba, Hyoyoung; Sarazin, Philippe; Hwang, Jooyeon; Dopart, Pamela; Russ, Daniel E; Deziel, Nicole C; Lavoué, Jérôme; Albert, Paul S; Zhu, Bin.
Afiliação
  • Friesen MC; National Cancer Institute, Division of Cancer Epidemiology & Genetics, Occupational and Environmental Epidemiology Branch, Rockville, MD, USA. friesenmc@mail.nih.gov.
  • Choo-Wosoba H; National Cancer Institute, Division of Cancer Epidemiology & Genetics, Biostatistics Branch, Rockville, MD, USA.
  • Sarazin P; Institut de recherche Robert-Sauvé en santé et en sécurité du travail, Chemical and Biological Hazards Prevention, Montréal, QC, Canada.
  • Hwang J; Department of Occupational and Environmental Health, Université de Montréal, Montréal, QC, Canada.
  • Dopart P; Department of Occupational and Environmental Health, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA.
  • Russ DE; National Cancer Institute, Division of Cancer Epidemiology & Genetics, Occupational and Environmental Epidemiology Branch, Rockville, MD, USA.
  • Deziel NC; Office of Intramural Research, Center for Information Technology, National Institutes of Health, Bethesda, MD, USA.
  • Lavoué J; Yale School of Public Health, Yale University, New Haven, CT, USA.
  • Albert PS; Department of Occupational and Environmental Health, Université de Montréal, Montréal, QC, Canada.
  • Zhu B; National Cancer Institute, Division of Cancer Epidemiology & Genetics, Biostatistics Branch, Rockville, MD, USA.
J Expo Sci Environ Epidemiol ; 31(6): 1047-1056, 2021 11.
Article em En | MEDLINE | ID: mdl-34006962
BACKGROUND: Most methods for treating left-censored data assume the analyte is present but not quantified. Biased estimates may result if the analyte is absent such that the unobserved data represents a mixed exposure distribution with an unknown proportion clustered at zero. OBJECTIVE: We used semi-continuous models to identify time and industry trends in 52,457 OSHA inspection lead sample results. METHOD: The first component of the semi-continuous model predicted the probability of detecting concentrations ≥ 0.007 mg/m3 (highest estimated detection limit, 62% of measurements). The second component predicted the median concentration of measurements ≥ 0.007 mg/m3. Both components included a random-effect for industry and fixed-effects for year, industry group, analytical method, and other variables. We used the two components together to predict median industry- and time-specific lead concentrations. RESULTS: The probabilities of detectable concentrations and the median detected concentrations decreased with year; both were also lower for measurements analyzed for multiple (vs. one) metals and for those analyzed by inductively-coupled plasma (vs. atomic absorption spectroscopy). The covariance was 0.30 (standard error = 0.06), confirming the two components were correlated. SIGNIFICANCE: We identified determinants of exposure in data with over 60% left-censored, while accounting for correlated relationships and without assuming a distribution for the censored data.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Modelos Estatísticos / Exposição Ocupacional Tipo de estudo: Diagnostic_studies / Prognostic_studies / Risk_factors_studies Limite: Humans Idioma: En Revista: J Expo Sci Environ Epidemiol Assunto da revista: EPIDEMIOLOGIA / SAUDE AMBIENTAL Ano de publicação: 2021 Tipo de documento: Article País de afiliação: Estados Unidos

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Modelos Estatísticos / Exposição Ocupacional Tipo de estudo: Diagnostic_studies / Prognostic_studies / Risk_factors_studies Limite: Humans Idioma: En Revista: J Expo Sci Environ Epidemiol Assunto da revista: EPIDEMIOLOGIA / SAUDE AMBIENTAL Ano de publicação: 2021 Tipo de documento: Article País de afiliação: Estados Unidos