Your browser doesn't support javascript.
loading
Integrative learning for population of dynamic networks with covariates.
Kundu, Suprateek; Ming, Jin; Nocera, Joe; McGregor, Keith M.
Afiliação
  • Kundu S; Biostatistics Emory University, 1518 Clifton Road, Atlanta, GA 30322, USA. Electronic address: suprateek.kundu@emory.edu.
  • Ming J; Biostatistics Emory University, 1518 Clifton Road, Atlanta, GA 30322, USA.
  • Nocera J; Biostatistics Emory University, 1518 Clifton Road, Atlanta, GA 30322, USA.
  • McGregor KM; Biostatistics Emory University, 1518 Clifton Road, Atlanta, GA 30322, USA.
Neuroimage ; 236: 118181, 2021 08 01.
Article em En | MEDLINE | ID: mdl-34022384
Although there is a rapidly growing literature on dynamic connectivity methods, the primary focus has been on separate network estimation for each individual, which fails to leverage common patterns of information. We propose novel graph-theoretic approaches for estimating a population of dynamic networks that are able to borrow information across multiple heterogeneous samples in an unsupervised manner and guided by covariate information. Specifically, we develop a Bayesian product mixture model that imposes independent mixture priors at each time scan and uses covariates to model the mixture weights, which results in time-varying clusters of samples designed to pool information. The computation is carried out using an efficient Expectation-Maximization algorithm. Extensive simulation studies illustrate sharp gains in recovering the true dynamic network over existing dynamic connectivity methods. An analysis of fMRI block task data with behavioral interventions reveal sub-groups of individuals having similar dynamic connectivity, and identifies intervention-related dynamic network changes that are concentrated in biologically interpretable brain regions. In contrast, existing dynamic connectivity approaches are able to detect minimal or no changes in connectivity over time, which seems biologically unrealistic and highlights the challenges resulting from the inability to systematically borrow information across samples.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Encéfalo / Imageamento por Ressonância Magnética / Redes Neurais de Computação / Conectoma / Aprendizado de Máquina não Supervisionado / Rede Nervosa Limite: Aged / Aged80 / Female / Humans / Male / Middle aged Idioma: En Revista: Neuroimage Assunto da revista: DIAGNOSTICO POR IMAGEM Ano de publicação: 2021 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Encéfalo / Imageamento por Ressonância Magnética / Redes Neurais de Computação / Conectoma / Aprendizado de Máquina não Supervisionado / Rede Nervosa Limite: Aged / Aged80 / Female / Humans / Male / Middle aged Idioma: En Revista: Neuroimage Assunto da revista: DIAGNOSTICO POR IMAGEM Ano de publicação: 2021 Tipo de documento: Article