Your browser doesn't support javascript.
loading
Hypothermic oxygenated machine perfusion of the human pancreas for clinical islet isolation: a prospective feasibility study.
Doppenberg, Jason B; Leemkuil, Marjolein; Engelse, Marten A; Krikke, Christina; de Koning, Eelco J P; Leuvenink, Henri G D.
Afiliação
  • Doppenberg JB; Transplantation Center, Leiden University Medical Center, Leiden, the Netherlands.
  • Leemkuil M; Department of Surgery, University Medical Center Groningen, Groningen, the Netherlands.
  • Engelse MA; Transplantation Center, Leiden University Medical Center, Leiden, the Netherlands.
  • Krikke C; Department of Surgery, University Medical Center Groningen, Groningen, the Netherlands.
  • de Koning EJP; Transplantation Center, Leiden University Medical Center, Leiden, the Netherlands.
  • Leuvenink HGD; Department of Surgery, University Medical Center Groningen, Groningen, the Netherlands.
Transpl Int ; 34(8): 1397-1407, 2021 Aug.
Article em En | MEDLINE | ID: mdl-34036616
ABSTRACT
Due to an increasing scarcity of pancreases with optimal donor characteristics, islet isolation centers utilize pancreases from extended criteria donors, such as from donation after circulatory death (DCD) donors, which are particularly susceptible to prolonged cold ischemia time (CIT). We hypothesized that hypothermic machine perfusion (HMP) can safely increase CIT. Five human DCD pancreases were subjected to 6 h of oxygenated HMP. Perfusion parameters, apoptosis, and edema were measured prior to islet isolation. Five human DBD pancreases were evaluated after static cold storage (SCS). Islet viability, and in vitro and in vivo functionality in diabetic mice were analyzed. Islets were isolated from HMP pancreases after 13.4 h [12.9-14.5] CIT and after 9.2 h [6.5-12.5] CIT from SCS pancreases. Histological analysis of the pancreatic tissue showed that HMP did not induce edema nor apoptosis. Islets maintained >90% viable during culture, and an appropriate in vitro and in vivo function in mice was demonstrated after HMP. The current study design does not permit to demonstrate that oxygenated HMP allows for cold ischemia extension; however, the successful isolation of functional islets from discarded human DCD pancreases after performing 6 h of oxygenated HMP indicates that oxygenated HMP may be a useful technology for better preservation of pancreases.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Preservação de Órgãos / Diabetes Mellitus Experimental Tipo de estudo: Observational_studies Limite: Animals / Humans Idioma: En Revista: Transpl Int Assunto da revista: TRANSPLANTE Ano de publicação: 2021 Tipo de documento: Article País de afiliação: Holanda

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Preservação de Órgãos / Diabetes Mellitus Experimental Tipo de estudo: Observational_studies Limite: Animals / Humans Idioma: En Revista: Transpl Int Assunto da revista: TRANSPLANTE Ano de publicação: 2021 Tipo de documento: Article País de afiliação: Holanda