Cellular mechanisms of mtDNA heteroplasmy dynamics.
Crit Rev Biochem Mol Biol
; 56(5): 510-525, 2021 10.
Article
em En
| MEDLINE
| ID: mdl-34120542
Heteroplasmy refers to the coexistence of more than one variant of the mitochondrial genome (mtDNA). Mutated or partially deleted mtDNAs can induce chronic metabolic impairment and cause mitochondrial diseases when their heteroplasmy levels exceed a critical threshold. These mutant mtDNAs can be maternally inherited or can arise de novo. Compelling evidence has emerged showing that mutant mtDNA levels can vary and change in a nonrandom fashion across generations and amongst tissues of an individual. However, our lack of understanding of the basic cellular and molecular mechanisms of mtDNA heteroplasmy dynamics has made it difficult to predict who will inherit or develop mtDNA-associated diseases. More recently, with the advances in technology and the establishment of tractable model systems, insights into the mechanisms underlying the selection forces that modulate heteroplasmy dynamics are beginning to emerge. In this review, we summarize evidence from different organisms, showing that mutant mtDNA can experience both positive and negative selection. We also review the recently identified mechanisms that modulate heteroplasmy dynamics. Taken together, this is an opportune time to survey the literature and to identify key cellular pathways that can be targeted to develop therapies for diseases caused by heteroplasmic mtDNA mutations.
Palavras-chave
Texto completo:
1
Coleções:
01-internacional
Base de dados:
MEDLINE
Assunto principal:
DNA Mitocondrial
/
Heteroplasmia
Tipo de estudo:
Prognostic_studies
Idioma:
En
Revista:
Crit Rev Biochem Mol Biol
Assunto da revista:
BIOLOGIA MOLECULAR
/
BIOQUIMICA
Ano de publicação:
2021
Tipo de documento:
Article
País de afiliação:
Estados Unidos