Your browser doesn't support javascript.
loading
De novo design of a pH-triggered self-assembled ß-hairpin nanopeptide with the dual biological functions for antibacterial and entrapment.
Li, Qiuke; Li, Jinze; Yu, Weikang; Wang, Zhihua; Li, Jiawei; Feng, Xingjun; Wang, Jiajun; Shan, Anshan.
Afiliação
  • Li Q; Laboratory of Molecular Nutrition and Immunity, The Institute of Animal Nutrition, Northeast Agricultural University, Harbin, People's Republic of China.
  • Li J; Laboratory of Molecular Nutrition and Immunity, The Institute of Animal Nutrition, Northeast Agricultural University, Harbin, People's Republic of China.
  • Yu W; Laboratory of Molecular Nutrition and Immunity, The Institute of Animal Nutrition, Northeast Agricultural University, Harbin, People's Republic of China.
  • Wang Z; Laboratory of Molecular Nutrition and Immunity, The Institute of Animal Nutrition, Northeast Agricultural University, Harbin, People's Republic of China.
  • Li J; Laboratory of Molecular Nutrition and Immunity, The Institute of Animal Nutrition, Northeast Agricultural University, Harbin, People's Republic of China.
  • Feng X; Laboratory of Molecular Nutrition and Immunity, The Institute of Animal Nutrition, Northeast Agricultural University, Harbin, People's Republic of China.
  • Wang J; Laboratory of Molecular Nutrition and Immunity, The Institute of Animal Nutrition, Northeast Agricultural University, Harbin, People's Republic of China. wjj1989@neau.edu.cn.
  • Shan A; Laboratory of Molecular Nutrition and Immunity, The Institute of Animal Nutrition, Northeast Agricultural University, Harbin, People's Republic of China. asshan@neau.edu.cn.
J Nanobiotechnology ; 19(1): 183, 2021 Jun 14.
Article em En | MEDLINE | ID: mdl-34127004
ABSTRACT

BACKGROUND:

Acid-tolerant enteric pathogens can evade small intestinal acid barriers, colonize and infect the intestinal tract. However, broad-spectrum antibiotics are not the best therapeutic strategy because of the disruption of intestinal flora caused by its indiscriminate antimicrobial activity against beneficial and harmful bacteria. So that is what inspired us to combine pH regulation with nanotechnology to develop a pH-triggered site-targeted antimicrobial peptide with entrapping function.

RESULTS:

A pH-triggered dual biological functional self-assembled peptide (SAP) was designed according to the features of amino-acid building blocks and the diagonal cation-π interaction principle. The results of characterization experiments showed that changes in pH conditions could trigger microstructural transformation of the nanopeptide from nanospheres to nanofibers. The subsequent antibacterial and toxicity experiments determined that SAP had great antimicrobial activity against Escherichia coli, Salmonella typhimurium, Listeria monocytogenes, and Bacillus cereus above 15.6 µg/mL under acidic conditions by disrupting bacterial membrane integrity, excellent biocompatibility in vitro even at 250 µg/mL and high tolerance in physical environment. Moreover, at peptide concentrations greater than 62.5 µg/mL, SAP showed the entrapment property, which played an important role in phagocytic clearance in infection forces. Meanwhile, the in vivo results revealed that SAP possessed excellent therapeutic effect and good biosafety.

CONCLUSIONS:

Our study revealed the antibacterial activity of a short ß-hairpin forming self-assembled peptide, and established an innovative design strategy for peptide-based nanomaterials and a new treatment strategy for gastrointestinal bacterial infections.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Bactérias / Peptídeos Catiônicos Antimicrobianos / Nanoestruturas / Antibacterianos Limite: Animals Idioma: En Revista: J Nanobiotechnology Ano de publicação: 2021 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Bactérias / Peptídeos Catiônicos Antimicrobianos / Nanoestruturas / Antibacterianos Limite: Animals Idioma: En Revista: J Nanobiotechnology Ano de publicação: 2021 Tipo de documento: Article