Sulfamethoxazole induced systematic and tissue-specific antioxidant defense in marine mussels (Mytilus galloprovincialis): Implication of antibiotic's ecotoxicity.
Chemosphere
; 279: 130634, 2021 Sep.
Article
em En
| MEDLINE
| ID: mdl-34134424
Sulfamethoxazole (SMX), recognized as emerging pollutant, has been frequently detected in aquatic environment. However, effects induced by SMX and the underneath mechanism on non-target aquatic organisms, marine mussels (Mytilus galloprovincialis), are still largely unknown. In present study, marine mussels were exposed to SMX (nominal concentrations 0.5, 50 and 500 µg/L) for 6 days, followed by 6 days depuration and responses of antioxidant defenses, e.g. superoxide dismutase (SOD), catalase (CAT) and glutathione-S-transferase (GST), etc., at transcriptional, translational and functional levels were evaluated in two vital tissues, gills and digestive glands. Results showed SMX can be accumulated in mussels while the bio-accumulative ability was low under the experimental condition. A systemic but not completely synchronous antioxidant defense at different levels upon SMX exposure. The transcriptional alteration was more sensitive and had the potential to be used as early warning of SMX induced ecotoxicity. Complementary function of antioxidant enzymes with specific alteration of metabolism related gene (gst) suggested that further researches should focused on SMX metabolism and SMX induced effects simultaneously. Significant tissue-specific antioxidant responses were discovered and gills showed earlier and quicker reacting ability than digestive glands, which was closely related to the functional diversity and different thresholds of xenobiotics allowance.
Palavras-chave
Texto completo:
1
Coleções:
01-internacional
Base de dados:
MEDLINE
Assunto principal:
Poluentes Químicos da Água
/
Mytilus
Limite:
Animals
Idioma:
En
Revista:
Chemosphere
Ano de publicação:
2021
Tipo de documento:
Article
País de afiliação:
China