Wnt signaling establishes the microtubule polarity in neurons through regulation of Kinesin-13.
J Cell Biol
; 220(9)2021 09 06.
Article
em En
| MEDLINE
| ID: mdl-34137792
Neuronal polarization is facilitated by the formation of axons with parallel arrays of plus-end-out and dendrites with the nonuniform orientation of microtubules. In C. elegans, the posterior lateral microtubule (PLM) neuron is bipolar with its two processes growing along the anterior-posterior axis under the guidance of Wnt signaling. Here we found that loss of the Kinesin-13 family microtubule-depolymerizing enzyme KLP-7 led to the ectopic extension of axon-like processes from the PLM cell body. Live imaging of the microtubules and axonal transport revealed mixed polarity of the microtubules in the short posterior process, which is dependent on both KLP-7 and the minus-end binding protein PTRN-1. KLP-7 is positively regulated in the posterior process by planar cell polarity components of Wnt involving rho-1/rock to induce mixed polarity of microtubules, whereas it is negatively regulated in the anterior process by the unc-73/ced-10 cascade to establish a uniform microtubule polarity. Our work elucidates how evolutionarily conserved Wnt signaling establishes the microtubule polarity in neurons through Kinesin-13.
Texto completo:
1
Coleções:
01-internacional
Base de dados:
MEDLINE
Assunto principal:
Cinesinas
/
Caenorhabditis elegans
/
Proteínas de Caenorhabditis elegans
/
Neurogênese
/
Via de Sinalização Wnt
/
Proteínas Associadas aos Microtúbulos
/
Microtúbulos
Limite:
Animals
Idioma:
En
Revista:
J Cell Biol
Ano de publicação:
2021
Tipo de documento:
Article
País de afiliação:
Índia