Carbamazepine Reduces Sharp Wave-Ripple Complexes and Exerts Synapse-Specific Inhibition of Neurotransmission in Ex Vivo Hippocampal Slices.
Brain Sci
; 11(6)2021 Jun 15.
Article
em En
| MEDLINE
| ID: mdl-34203601
Higher therapeutic concentrations of the antiseizure medication carbamazepine (CBZ) are associated with cognitive side effects. Hippocampal sharp wave-ripple complexes (SPW-Rs) are proposed to participate in memory consolidation during periods of quiet and slow-wave sleep. SPW-Rs are generated in the CA3 region and are regulated by multiple synaptic inputs. Here, we used a multi-electrode array to determine the effects of CBZ on SPW-Rs and synaptic transmission at multiple hippocampal synapses. Our results demonstrate that CBZ reduced SPW-Rs at therapeutically relevant concentrations (IC50 = 37 µM) and altered the core characteristics of ripples, important for information processing and consolidation. Moreover, CBZ inhibited neurotransmission in a synapse-specific manner. CBZ inhibition was most potent at the medial-perforant-path-to-CA3 and mossy-fiber-to-CA3 synapses (IC50s ~ 30 and 60 µM, respectively) and least potent at medial-perforant-path-to-dentate granule cell synapses (IC50 ~ 120 µM). These results suggest that the synapse-specific CBZ inhibition of neurotransmission reduces SPW-Rs and that the CBZ inhibition of SPW-Rs may underlie the cognitive impairments observed with therapeutic doses of CBZ.
Texto completo:
1
Coleções:
01-internacional
Base de dados:
MEDLINE
Idioma:
En
Revista:
Brain Sci
Ano de publicação:
2021
Tipo de documento:
Article
País de afiliação:
Estados Unidos