Your browser doesn't support javascript.
loading
Chemical Modulation of the 1-(Piperidin-4-yl)-1,3-dihydro-2H-benzo[d]imidazole-2-one Scaffold as a Novel NLRP3 Inhibitor.
Gastaldi, Simone; Boscaro, Valentina; Gianquinto, Eleonora; Sandall, Christina F; Giorgis, Marta; Marini, Elisabetta; Blua, Federica; Gallicchio, Margherita; Spyrakis, Francesca; MacDonald, Justin A; Bertinaria, Massimo.
Afiliação
  • Gastaldi S; Department of Drug Science and Technology, University of Turin, Via Giuria 9, 10125 Torino, Italy.
  • Boscaro V; Department of Drug Science and Technology, University of Turin, Via Giuria 9, 10125 Torino, Italy.
  • Gianquinto E; Department of Drug Science and Technology, University of Turin, Via Giuria 9, 10125 Torino, Italy.
  • Sandall CF; Department of Biochemistry & Molecular Biology, Cumming School of Medicine, University of Calgary, 3280 Hospital Drive NW, Calgary, AB T2N 4Z6, Canada.
  • Giorgis M; Department of Drug Science and Technology, University of Turin, Via Giuria 9, 10125 Torino, Italy.
  • Marini E; Department of Drug Science and Technology, University of Turin, Via Giuria 9, 10125 Torino, Italy.
  • Blua F; Department of Drug Science and Technology, University of Turin, Via Giuria 9, 10125 Torino, Italy.
  • Gallicchio M; Department of Drug Science and Technology, University of Turin, Via Giuria 9, 10125 Torino, Italy.
  • Spyrakis F; Department of Drug Science and Technology, University of Turin, Via Giuria 9, 10125 Torino, Italy.
  • MacDonald JA; Department of Biochemistry & Molecular Biology, Cumming School of Medicine, University of Calgary, 3280 Hospital Drive NW, Calgary, AB T2N 4Z6, Canada.
  • Bertinaria M; Department of Drug Science and Technology, University of Turin, Via Giuria 9, 10125 Torino, Italy.
Molecules ; 26(13)2021 Jun 29.
Article em En | MEDLINE | ID: mdl-34209843
ABSTRACT
In the search for new chemical scaffolds able to afford NLRP3 inflammasome inhibitors, we used a pharmacophore-hybridization strategy by combining the structure of the acrylic acid derivative INF39 with the 1-(piperidin-4-yl)1,3-dihydro-2H-benzo[d]imidazole-2-one substructure present in HS203873, a recently identified NLRP3 binder. A series of differently modulated benzo[d]imidazole-2-one derivatives were designed and synthesised. The obtained compounds were screened in vitro to test their ability to inhibit NLRP3-dependent pyroptosis and IL-1ß release in PMA-differentiated THP-1 cells stimulated with LPS/ATP. The selected compounds were evaluated for their ability to reduce the ATPase activity of human recombinant NLRP3 using a newly developed assay. From this screening, compounds 9, 13 and 18, able to concentration-dependently inhibit IL-1ß release in LPS/ATP-stimulated human macrophages, emerged as the most promising NLRP3 inhibitors of the series. Computational simulations were applied for building the first complete model of the NLRP3 inactive state and for identifying possible binding sites available to the tested compounds. The analyses led us to suggest a mechanism of protein-ligand binding that might explain the activity of the compounds.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Interleucina-1beta / Piroptose / Proteína 3 que Contém Domínio de Pirina da Família NLR / Imidazóis / Macrófagos Limite: Humans Idioma: En Revista: Molecules Assunto da revista: BIOLOGIA Ano de publicação: 2021 Tipo de documento: Article País de afiliação: Itália

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Interleucina-1beta / Piroptose / Proteína 3 que Contém Domínio de Pirina da Família NLR / Imidazóis / Macrófagos Limite: Humans Idioma: En Revista: Molecules Assunto da revista: BIOLOGIA Ano de publicação: 2021 Tipo de documento: Article País de afiliação: Itália