Your browser doesn't support javascript.
loading
Incorporating spin-orbit coupling promoted functional group into an enhanced electron D-A system: A useful designing concept for fabricating efficient photosensitizer and imaging-guided photodynamic therapy.
Yang, Zengming; Zhang, Zhijun; Sun, Yuqing; Lei, Ziqiang; Wang, Dong; Ma, Hengchang; Tang, Ben Zhong.
Afiliação
  • Yang Z; Key Laboratory of Eco-functional Polymer Materials of the Ministry of Education, Key Laboratory of Eco-environmental Polymer Materials of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, 730070, China.
  • Zhang Z; Center for AIE Research, Shenzhen Key Laboratory of Polymer Science and Technology, Guangdong Research Center for Interfacial Engineering of Functional Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518060, China.
  • Sun Y; Key Laboratory of Eco-functional Polymer Materials of the Ministry of Education, Key Laboratory of Eco-environmental Polymer Materials of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, 730070, China.
  • Lei Z; Key Laboratory of Eco-functional Polymer Materials of the Ministry of Education, Key Laboratory of Eco-environmental Polymer Materials of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, 730070, China. Electronic address: leizq@nwnu.edu.cn.
  • Wang D; Center for AIE Research, Shenzhen Key Laboratory of Polymer Science and Technology, Guangdong Research Center for Interfacial Engineering of Functional Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518060, China. Electronic address: wangd@szu.edu.cn.
  • Ma H; Key Laboratory of Eco-functional Polymer Materials of the Ministry of Education, Key Laboratory of Eco-environmental Polymer Materials of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, 730070, China. Electronic address: mahczju@hotmail.com.
  • Tang BZ; Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, Department of Chemistry, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, 999077, Hong Kong, China. Electronic address: tangbenz@ust.hk.
Biomaterials ; 275: 120934, 2021 08.
Article em En | MEDLINE | ID: mdl-34217019
ABSTRACT
Intersystem crossing (ISC) is of great significance in photochemistry, and has a decisive influence on the properties of photosensitizers (PSs) for use in photodynamic therapy (PDT). However, the rationally design PSs with efficient ISC processes to implement superb reactive oxygen species (ROS) production is still a very challenging work. In this contribution, we described how a series of high-performance PSs were constructed through electron acceptor and donor engineering by integrating the smaller singlet-triplet energy gap (ΔEST) and larger spin-orbit coupling (SOC)-beneficial functional groups into the PS frameworks. Among the yielded various PSs, TaTIC was confirmed as the best candidate for application in PDT, which was due to its most outstanding ROS generation capability, bright near-infrared (NIR) fluorescence with peak over 840 nm, as well as desired aggregation-induced emission (AIE) features. Importantly, the ROS generation efficiency of TaTIC was even superior to that of some popularly used PSs, including the most reputable PS of Rose Bengal. In order to further extend therapeutic applications, TaTIC was encapsulated with biocompatible amphiphilic matrix and formulated into water-dispersed nanoparticles (NPs). More excitedly, the as-prepared TaTIC NPs gave wonderful PDT performance on tumor-bearing mouse model, actualizing complete tumor elimination outcomes. Coupled with excellent biosecurity, TaTIC NPs would be a promising theranostic agent for practical clinical application.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Fotoquimioterapia / Neoplasias Limite: Animals Idioma: En Revista: Biomaterials Ano de publicação: 2021 Tipo de documento: Article País de afiliação: China

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Fotoquimioterapia / Neoplasias Limite: Animals Idioma: En Revista: Biomaterials Ano de publicação: 2021 Tipo de documento: Article País de afiliação: China