Fused-Nonacyclic Multi-Resonance Delayed Fluorescence Emitter Based on Ladder-Thiaborin Exhibiting Narrowband Sky-Blue Emission with Accelerated Reverse Intersystem Crossing.
Angew Chem Int Ed Engl
; 60(37): 20280-20285, 2021 Sep 06.
Article
em En
| MEDLINE
| ID: mdl-34268850
Developing organic luminophores with unique capability of strong narrowband emission is both crucial and challenging for the further advancement of organic light-emitting diodes (OLEDs). Herein, a nanographitic fused-nonacyclic π-system (BSBS-N1), which was strategically embedded with multiple boron, nitrogen, and sulfur atoms, was developed as a new multi-resonance thermally activated delayed fluorescence (MR-TADF) emitter. Narrowband sky-blue emission with a peak at 478â
nm, full width at half maximum of 24â
nm, and photoluminescence quantum yield of 89 % was obtained with BSBS-N1. Additionally, the spin-orbit coupling was enhanced by incorporating two sulfur atoms, thereby facilitating the spin-flipping process between the excited triplet and singlet states. OLEDs based on BSBS-N1 as a sky-blue MR-TADF emitter achieved a high maximum external electroluminescence quantum efficiency of 21.0 %, with improved efficiency roll-off.
Texto completo:
1
Coleções:
01-internacional
Base de dados:
MEDLINE
Idioma:
En
Revista:
Angew Chem Int Ed Engl
Ano de publicação:
2021
Tipo de documento:
Article
País de afiliação:
Japão