Long-term nitrogen isotope dynamics in Encelia farinosa reflect plant demographics and climate.
New Phytol
; 232(3): 1226-1237, 2021 11.
Article
em En
| MEDLINE
| ID: mdl-34352127
While plant δ15 N values have been applied to understand nitrogen (N) dynamics, uncertainties regarding intraspecific and temporal variability currently limit their application. We used a 28 yr record of δ15 N values from two Mojave Desert populations of Encelia farinosa to clarify sources of population-level variability. We leveraged > 3500 foliar δ15 N observations collected alongside structural, physiological, and climatic data to identify plant and environmental contributors to δ15 N values. Additional sampling of soils, roots, stems, and leaves enabled assessment of the distribution of soil N content and δ15 N, intra-plant fractionations, and relationships between soil and plant δ15 N values. We observed extensive within-population variability in foliar δ15 N values and found plant age and foliar %N to be the strongest predictors of individual δ15 N values. There were consistent differences between root, stem, and leaf δ15 N values (spanning c. 3), but plant and bulk soil δ15 N values were unrelated. Plant-level variables played a strong role in influencing foliar δ15 N values, and interannual relationships between climate and δ15 N values were counter to previously recognized spatial patterns. This long-term record provides insights regarding the interpretation of δ15 N values that were not available from previous large-scale syntheses, broadly enabling more effective application of foliar δ15 N values.
Palavras-chave
Texto completo:
1
Coleções:
01-internacional
Base de dados:
MEDLINE
Assunto principal:
Asteraceae
/
Nitrogênio
Tipo de estudo:
Prognostic_studies
/
Risk_factors_studies
Idioma:
En
Revista:
New Phytol
Assunto da revista:
BOTANICA
Ano de publicação:
2021
Tipo de documento:
Article
País de afiliação:
Estados Unidos