Your browser doesn't support javascript.
loading
Development of Methanol Permselective FAU-Type Zeolite Membranes and Their Permeation and Separation Performances.
Ikeda, Ayumi; Abe, Chie; Matsuura, Wakako; Hasegawa, Yasuhisa.
Afiliação
  • Ikeda A; Research Institute of Chemical Process Technology, National Institute of Advanced Industrial Science and Technology (AIST), 4-2-1 Nigatake, Miyagino-ku, Sendai 983-8551, Japan.
  • Abe C; Research Institute of Chemical Process Technology, National Institute of Advanced Industrial Science and Technology (AIST), 4-2-1 Nigatake, Miyagino-ku, Sendai 983-8551, Japan.
  • Matsuura W; Research Institute of Chemical Process Technology, National Institute of Advanced Industrial Science and Technology (AIST), 4-2-1 Nigatake, Miyagino-ku, Sendai 983-8551, Japan.
  • Hasegawa Y; Research Institute of Chemical Process Technology, National Institute of Advanced Industrial Science and Technology (AIST), 4-2-1 Nigatake, Miyagino-ku, Sendai 983-8551, Japan.
Membranes (Basel) ; 11(8)2021 Aug 15.
Article em En | MEDLINE | ID: mdl-34436390
The separation of non-aqueous mixtures is important for chemical production, and zeolite membranes have great potential for energy-efficient separation. In this study, the influence of the framework structure and composition of zeolites on the permeation and separation performance of methanol through zeolite membranes were investigated to develop a methanol permselective zeolite membrane. As a result, the FAU-type zeolite membrane prepared using a solution with a composition of 10 SiO2:1 Al2O3:17 Na2O:1000 H2O showed the highest permeation flux of 86,600 µmol m-2 s-1 and a separation factor of 6020 for a 10 wt% methanol/methyl hexanoate mixture at 353 K. The membrane showed a molecular sieving effect, reducing the single permeation flux of alcohol with molecular size for single-component alcohols. Moreover, the permeation flux of methanol and the separation factor increased with an increase in the carbon number of the alcohols and methyl esters containing 10 wt% methanol. In this study, the permeation behavior of FAU-type zeolite membranes was also discussed based on permeation data. These results suggest that the FAU-type zeolite membrane has the potential to separate organic solvent mixtures, such as solvent recycling and membrane reactors.
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Revista: Membranes (Basel) Ano de publicação: 2021 Tipo de documento: Article País de afiliação: Japão

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Revista: Membranes (Basel) Ano de publicação: 2021 Tipo de documento: Article País de afiliação: Japão