Energy Migration Control of Multimodal Emissions in an Er3+ -Doped Nanostructure for Information Encryption and Deep-Learning Decoding.
Angew Chem Int Ed Engl
; 60(44): 23790-23796, 2021 10 25.
Article
em En
| MEDLINE
| ID: mdl-34476872
Modulating the emission wavelengths of materials has always been a primary focus of fluorescence technology. Nanocrystals (NCs) doped with lanthanide ions with rich energy levels can produce a variety of emissions at different excitation wavelengths. However, the control of multimodal emissions of these ions has remained a challenge. Herein, we present a new composition of Er3+ -based lanthanide NCs with color-switchable output under irradiation with 980, 808, or 1535â
nm light for information security. The variation of excitation wavelengths changes the intensity ratio of visible (Vis)/near-infrared (NIR-II) emissions. Taking advantage of the Vis/NIR-II multimodal emissions of NCs and deep learning, we successfully demonstrated the storage and decoding of visible light information in pork tissue.
Texto completo:
1
Coleções:
01-internacional
Base de dados:
MEDLINE
Idioma:
En
Revista:
Angew Chem Int Ed Engl
Ano de publicação:
2021
Tipo de documento:
Article
País de afiliação:
China