Your browser doesn't support javascript.
loading
A short survey of dengue protease inhibitor development in the past 6 years (2015-2020) with an emphasis on similarities between DENV and SARS-CoV-2 proteases.
Murtuja, Sheikh; Shilkar, Deepak; Sarkar, Biswatrish; Sinha, Barij Nayan; Jayaprakash, Venkatesan.
Afiliação
  • Murtuja S; Department of Pharmaceutical Sciences & Technology, Birla Institute of Technology, Mesra, Ranchi 835215 (JH), India.
  • Shilkar D; Department of Pharmaceutical Sciences & Technology, Birla Institute of Technology, Mesra, Ranchi 835215 (JH), India.
  • Sarkar B; Department of Pharmaceutical Sciences & Technology, Birla Institute of Technology, Mesra, Ranchi 835215 (JH), India.
  • Sinha BN; Department of Pharmaceutical Sciences & Technology, Birla Institute of Technology, Mesra, Ranchi 835215 (JH), India.
  • Jayaprakash V; Department of Pharmaceutical Sciences & Technology, Birla Institute of Technology, Mesra, Ranchi 835215 (JH), India. Electronic address: venkatesanj@bitmesra.ac.in.
Bioorg Med Chem ; 49: 116415, 2021 11 01.
Article em En | MEDLINE | ID: mdl-34601454
ABSTRACT
Dengue remains a disease of significant concern, responsible for nearly half of all arthropod-borne disease cases across the globe. Due to the lack of potent and targeted therapeutics, palliative treatment and the adoption of preventive measures remain the only available options. Compounding the problem further, the failure of the only dengue vaccine, Dengvaxia®, also delivered a significant blow to any hopes for the treatment of dengue fever. However, the success of Human Immuno-deficiency Virus (HIV) and Hepatitis C Virus (HCV) protease inhibitors in the past have continued to encourage researchers to investigate other viral protease targets. Dengue virus (DENV) NS2B-NS3 protease is an attractive target partly due to its role in polyprotein processing and also for being the most conserved domain in the viral genome. During the early days of the COVID-19 pandemic, a few cases of Dengue-COVID 19 co-infection were reported. In this review, we compared the substrate-peptide residue preferences and the residues lining the sub-pockets of the proteases of these two viruses and analyzed the significance of this similarity. Also, we attempted to abridge the developments in anti-dengue drug discovery in the last six years (2015-2020), focusing on critical discoveries that influenced the research.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Antivirais / Inibidores de Proteases / Cisteína Endopeptidases / Vírus da Dengue / Proteases 3C de Coronavírus / SARS-CoV-2 Limite: Humans Idioma: En Revista: Bioorg Med Chem Assunto da revista: BIOQUIMICA / QUIMICA Ano de publicação: 2021 Tipo de documento: Article País de afiliação: Índia

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Antivirais / Inibidores de Proteases / Cisteína Endopeptidases / Vírus da Dengue / Proteases 3C de Coronavírus / SARS-CoV-2 Limite: Humans Idioma: En Revista: Bioorg Med Chem Assunto da revista: BIOQUIMICA / QUIMICA Ano de publicação: 2021 Tipo de documento: Article País de afiliação: Índia