Your browser doesn't support javascript.
loading
KDM5B promotes immune evasion by recruiting SETDB1 to silence retroelements.
Zhang, Shang-Min; Cai, Wesley L; Liu, Xiaoni; Thakral, Durga; Luo, Jiesi; Chan, Lok Hei; McGeary, Meaghan K; Song, Eric; Blenman, Kim R M; Micevic, Goran; Jessel, Shlomit; Zhang, Yangyi; Yin, Mingzhu; Booth, Carmen J; Jilaveanu, Lucia B; Damsky, William; Sznol, Mario; Kluger, Harriet M; Iwasaki, Akiko; Bosenberg, Marcus W; Yan, Qin.
Afiliação
  • Zhang SM; Department of Pathology, Yale School of Medicine, New Haven, CT, USA.
  • Cai WL; Department of Pathology, Yale School of Medicine, New Haven, CT, USA.
  • Liu X; Hillman Cancer Center, University of Pittsburgh Medical Center, Pittsburgh, PA, USA.
  • Thakral D; Department of Pathology, Yale School of Medicine, New Haven, CT, USA.
  • Luo J; Department of Dermatology, Yale School of Medicine, New Haven, CT, USA.
  • Chan LH; Department of Dermatology, Yale School of Medicine, New Haven, CT, USA.
  • McGeary MK; Section of Cardiovascular Medicine, Department of Internal Medicine, Yale Cardiovascular Research Center, Yale School of Medicine, New Haven, CT, USA.
  • Song E; Yale Stem Cell Center, Yale School of Medicine, New Haven, CT, USA.
  • Blenman KRM; Department of Pathology, Yale School of Medicine, New Haven, CT, USA.
  • Micevic G; Department of Pathology, Yale School of Medicine, New Haven, CT, USA.
  • Jessel S; Department of Dermatology, Yale School of Medicine, New Haven, CT, USA.
  • Zhang Y; Department of Immunobiology, Yale School of Medicine, New Haven, CT, USA.
  • Yin M; Department of Dermatology, Yale School of Medicine, New Haven, CT, USA.
  • Booth CJ; Department of Medicine, Yale School of Medicine, New Haven, CT, USA.
  • Jilaveanu LB; Yale Cancer Center, Yale School of Medicine, New Haven, CT, USA.
  • Damsky W; Department of Dermatology, Yale School of Medicine, New Haven, CT, USA.
  • Sznol M; Department of Medicine, Yale School of Medicine, New Haven, CT, USA.
  • Kluger HM; Department of Pathology, Yale School of Medicine, New Haven, CT, USA.
  • Iwasaki A; Department of Dermatology, Hunan Engineering Research Center of Skin Health and Disease, Hunan Key Laboratory of Skin Cancer and Psoriasis, Xiangya Hospital, Central South University, Changsha, China.
  • Bosenberg MW; Department of Pathology, Yale School of Medicine, New Haven, CT, USA.
  • Yan Q; Department of Dermatology, Hunan Engineering Research Center of Skin Health and Disease, Hunan Key Laboratory of Skin Cancer and Psoriasis, Xiangya Hospital, Central South University, Changsha, China.
Nature ; 598(7882): 682-687, 2021 10.
Article em En | MEDLINE | ID: mdl-34671158
ABSTRACT
Tumours use various strategies to evade immune surveillance1,2. Immunotherapies targeting tumour immune evasion such as immune checkpoint blockade have shown considerable efficacy on multiple cancers3,4 but are ineffective for most patients due to primary or acquired resistance5-7. Recent studies showed that some epigenetic regulators suppress anti-tumour immunity2,8-12, suggesting that epigenetic therapies could boost anti-tumour immune responses and overcome resistance to current immunotherapies. Here we show that, in mouse melanoma models, depletion of KDM5B-an H3K4 demethylase that is critical for melanoma maintenance and drug resistance13-15-induces robust adaptive immune responses and enhances responses to immune checkpoint blockade. Mechanistically, KDM5B recruits the H3K9 methyltransferase SETDB1 to repress endogenous retroelements such as MMVL30 in a demethylase-independent manner. Derepression of these retroelements activates cytosolic RNA-sensing and DNA-sensing pathways and the subsequent type-I interferon response, leading to tumour rejection and induction of immune memory. Our results demonstrate that KDM5B suppresses anti-tumour immunity by epigenetic silencing of retroelements. We therefore reveal roles of KDM5B in heterochromatin regulation and immune evasion in melanoma, opening new paths for the development of KDM5B-targeting and SETDB1-targeting therapies to enhance tumour immunogenicity and overcome immunotherapy resistance.
Assuntos

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Histona-Lisina N-Metiltransferase / Retroelementos / Evasão Tumoral / Inativação Gênica / Proteínas de Ligação a DNA / Histona Desmetilases com o Domínio Jumonji / Melanoma Tipo de estudo: Prognostic_studies Limite: Animals / Humans / Male Idioma: En Revista: Nature Ano de publicação: 2021 Tipo de documento: Article País de afiliação: Estados Unidos

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Histona-Lisina N-Metiltransferase / Retroelementos / Evasão Tumoral / Inativação Gênica / Proteínas de Ligação a DNA / Histona Desmetilases com o Domínio Jumonji / Melanoma Tipo de estudo: Prognostic_studies Limite: Animals / Humans / Male Idioma: En Revista: Nature Ano de publicação: 2021 Tipo de documento: Article País de afiliação: Estados Unidos