Classification of imbalanced oral cancer image data from high-risk population.
J Biomed Opt
; 26(10)2021 10.
Article
em En
| MEDLINE
| ID: mdl-34689442
SIGNIFICANCE: Early detection of oral cancer is vital for high-risk patients, and machine learning-based automatic classification is ideal for disease screening. However, current datasets collected from high-risk populations are unbalanced and often have detrimental effects on the performance of classification. AIM: To reduce the class bias caused by data imbalance. APPROACH: We collected 3851 polarized white light cheek mucosa images using our customized oral cancer screening device. We use weight balancing, data augmentation, undersampling, focal loss, and ensemble methods to improve the neural network performance of oral cancer image classification with the imbalanced multi-class datasets captured from high-risk populations during oral cancer screening in low-resource settings. RESULTS: By applying both data-level and algorithm-level approaches to the deep learning training process, the performance of the minority classes, which were difficult to distinguish at the beginning, has been improved. The accuracy of "premalignancy" class is also increased, which is ideal for screening applications. CONCLUSIONS: Experimental results show that the class bias induced by imbalanced oral cancer image datasets could be reduced using both data- and algorithm-level methods. Our study may provide an important basis for helping understand the influence of unbalanced datasets on oral cancer deep learning classifiers and how to mitigate.
Palavras-chave
Texto completo:
1
Coleções:
01-internacional
Base de dados:
MEDLINE
Assunto principal:
Neoplasias Bucais
/
Redes Neurais de Computação
Tipo de estudo:
Diagnostic_studies
/
Etiology_studies
/
Risk_factors_studies
/
Screening_studies
Limite:
Humans
Idioma:
En
Revista:
J Biomed Opt
Assunto da revista:
ENGENHARIA BIOMEDICA
/
OFTALMOLOGIA
Ano de publicação:
2021
Tipo de documento:
Article
País de afiliação:
Estados Unidos