Your browser doesn't support javascript.
loading
A deep learning approach for complex microstructure inference.
Durmaz, Ali Riza; Müller, Martin; Lei, Bo; Thomas, Akhil; Britz, Dominik; Holm, Elizabeth A; Eberl, Chris; Mücklich, Frank; Gumbsch, Peter.
Afiliação
  • Durmaz AR; Fraunhofer Institute for Mechanics of Materials IWM, Freiburg, 79108, Germany. ali.riza.durmaz@iwm.fraunhofer.de.
  • Müller M; Karlsruhe Institute of Technology (KIT), Institute for Applied Materials IAM, Karlsruhe, 76131, Germany. ali.riza.durmaz@iwm.fraunhofer.de.
  • Lei B; University of Freiburg, Freiburg, 79110, Germany. ali.riza.durmaz@iwm.fraunhofer.de.
  • Thomas A; Department of Materials Science, Saarland University, Saarbrücken, 66123, Germany.
  • Britz D; Material Engineering Center Saarland, Saarbrücken, 66123, Germany.
  • Holm EA; Department of Materials Science and Engineering, Carnegie Mellon University, Pittsburgh, PA, 15213, USA.
  • Eberl C; Fraunhofer Institute for Mechanics of Materials IWM, Freiburg, 79108, Germany.
  • Mücklich F; University of Freiburg, Freiburg, 79110, Germany.
  • Gumbsch P; Department of Materials Science, Saarland University, Saarbrücken, 66123, Germany.
Nat Commun ; 12(1): 6272, 2021 11 01.
Article em En | MEDLINE | ID: mdl-34725339
ABSTRACT
Automated, reliable, and objective microstructure inference from micrographs is essential for a comprehensive understanding of process-microstructure-property relations and tailored materials development. However, such inference, with the increasing complexity of microstructures, requires advanced segmentation methodologies. While deep learning offers new opportunities, an intuition about the required data quality/quantity and a methodological guideline for microstructure quantification is still missing. This, along with deep learning's seemingly intransparent decision-making process, hampers its breakthrough in this field. We apply a multidisciplinary deep learning approach, devoting equal attention to specimen preparation and imaging, and train distinct U-Net architectures with 30-50 micrographs of different imaging modalities and electron backscatter diffraction-informed annotations. On the challenging task of lath-bainite segmentation in complex-phase steel, we achieve accuracies of 90% rivaling expert segmentations. Further, we discuss the impact of image context, pre-training with domain-extrinsic data, and data augmentation. Network visualization techniques demonstrate plausible model decisions based on grain boundary morphology.

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Tipo de estudo: Prognostic_studies Idioma: En Revista: Nat Commun Assunto da revista: BIOLOGIA / CIENCIA Ano de publicação: 2021 Tipo de documento: Article País de afiliação: Alemanha

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Tipo de estudo: Prognostic_studies Idioma: En Revista: Nat Commun Assunto da revista: BIOLOGIA / CIENCIA Ano de publicação: 2021 Tipo de documento: Article País de afiliação: Alemanha