Your browser doesn't support javascript.
loading
Future roots for future soils.
Lynch, Jonathan P; Mooney, Sacha J; Strock, Christopher F; Schneider, Hannah M.
Afiliação
  • Lynch JP; Department of Plant Science, The Pennsylvania State University, University Park, Pennsylvania, USA.
  • Mooney SJ; School of Biosciences, University of Nottingham, Leicestershire, UK.
  • Strock CF; Department of Plant Science, The Pennsylvania State University, University Park, Pennsylvania, USA.
  • Schneider HM; Centre for Crop Systems Analysis, Wageningen University & Research, Wageningen, The Netherlands.
Plant Cell Environ ; 45(3): 620-636, 2022 03.
Article em En | MEDLINE | ID: mdl-34725839
ABSTRACT
Mechanical impedance constrains root growth in most soils. Crop cultivation changed the impedance characteristics of native soils, through topsoil erosion, loss of organic matter, disruption of soil structure and loss of biopores. Increasing adoption of Conservation Agriculture in high-input agroecosystems is returning cultivated soils to the soil impedance characteristics of native soils, but in the low-input agroecosystems characteristic of developing nations, ongoing soil degradation is generating more challenging environments for root growth. We propose that root phenotypes have evolved to adapt to the altered impedance characteristics of cultivated soil during crop domestication. The diverging trajectories of soils under Conservation Agriculture and low-input agroecosystems have implications for strategies to develop crops to meet global needs under climate change. We present several root ideotypes as breeding targets under the impedance regimes of both high-input and low-input agroecosystems, as well as a set of root phenotypes that should be useful in both scenarios. We argue that a 'whole plant in whole soil' perspective will be useful in guiding the development of future crops for future soils.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Solo / Raízes de Plantas Idioma: En Revista: Plant Cell Environ Assunto da revista: BOTANICA Ano de publicação: 2022 Tipo de documento: Article País de afiliação: Estados Unidos

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Solo / Raízes de Plantas Idioma: En Revista: Plant Cell Environ Assunto da revista: BOTANICA Ano de publicação: 2022 Tipo de documento: Article País de afiliação: Estados Unidos