Your browser doesn't support javascript.
loading
A Systematic Review on Nanoencapsulation Natural Antimicrobials in Foods: In Vitro versus In Situ Evaluation, Mechanisms of Action and Implications on Physical-Chemical Quality.
Lelis, Carini Aparecida; de Carvalho, Anna Paula Azevedo; Conte Junior, Carlos Adam.
Afiliação
  • Lelis CA; Center for Food Analysis (NAL), Technological Development Support Laboratory (LADETEC), Federal University of Rio de Janeiro (UFRJ), Cidade Universitária, Rio de Janeiro 21941-598, Brazil.
  • de Carvalho APA; Nanotechnology Network, Carlos Chagas Filho Research Support Foundation of the State of Rio de Janeiro (FAPERJ), Rio de Janeiro 20020-000, Brazil.
  • Conte Junior CA; Laboratory of Advanced Analysis in Biochemistry and Molecular Biology (LAABBM), Department of Biochemistry, Federal University of Rio de Janeiro (UFRJ), Cidade Universitária, Rio de Janeiro 21941-909, Brazil.
Int J Mol Sci ; 22(21)2021 Nov 08.
Article em En | MEDLINE | ID: mdl-34769485
ABSTRACT
Natural antimicrobials (NA) have stood out in the last decade due to the growing demand for reducing chemical preservatives in food. Once solubility, stability, and changes in sensory attributes could limit their applications in foods, several studies were published suggesting micro-/nanoencapsulation to overcome such challenges. Thus, for our systematic review the Science Direct, Web of Science, Scopus, and Pub Med databases were chosen to recover papers published from 2010 to 2020. After reviewing all titles/abstracts and keywords for the full-text papers, key data were extracted and synthesized. The systematic review proposed to compare the antimicrobial efficacy between nanoencapsulated NA (nNA) and its free form in vitro and in situ studies, since although in vitro studies are often used in studies, they present characteristics and properties that are different from those found in foods; providing a comprehensive understanding of primary mechanisms of action of the nNA in foods; and analyzing the effects on quality parameters of foods. Essential oils and nanoemulsions (10.9-100 nm) have received significant attention and showed higher antimicrobial efficacy without sensory impairments compared to free NA. Regarding nNA mechanisms (i) nanoencapsulation provides a slow-prolonged release to promote antimicrobial action over time, and (ii) prevents interactions with food constituents that in turn impair antimicrobial action. Besides in vitro antifungal and antibacterial, nNA also demonstrated antioxidant activity-potential to shelf life extension in food. However, of the studies involving nanoencapsulated natural antimicrobials used in this review, little attention was placed on proximate composition, sensory, and rheological evaluation. We encourage further in situ studies once data differ from in vitro assay, suggesting food matrix greatly influences NA mechanisms.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Óleos Voláteis / Microbiologia de Alimentos / Conservantes de Alimentos / Sistemas de Liberação de Fármacos por Nanopartículas / Lipossomos / Antibacterianos / Antifúngicos Tipo de estudo: Systematic_reviews Idioma: En Revista: Int J Mol Sci Ano de publicação: 2021 Tipo de documento: Article País de afiliação: Brasil

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Óleos Voláteis / Microbiologia de Alimentos / Conservantes de Alimentos / Sistemas de Liberação de Fármacos por Nanopartículas / Lipossomos / Antibacterianos / Antifúngicos Tipo de estudo: Systematic_reviews Idioma: En Revista: Int J Mol Sci Ano de publicação: 2021 Tipo de documento: Article País de afiliação: Brasil