Relative Binding Free-Energy Calculations at Lipid-Exposed Sites: Deciphering Hot Spots.
J Chem Inf Model
; 61(12): 5923-5930, 2021 12 27.
Article
em En
| MEDLINE
| ID: mdl-34843243
Relative binding free-energy (RBFE) calculations are experiencing resurgence in the computer-aided drug design of novel small molecules due to performance gains allowed by cutting-edge molecular mechanic force fields and computer hardware. Application of RBFE to soluble proteins is becoming a routine, while recent studies outline necessary steps to successfully apply RBFE at the orthosteric site of membrane-embedded G-protein-coupled receptors (GPCRs). In this work, we apply RBFE to a congeneric series of antagonists that bind to a lipid-exposed, extra-helical site of the P2Y1 receptor. We find promising performance of RBFE, such that it may be applied in a predictive manner on drug discovery programs targeting lipid-exposed sites. Further, by the application of the microkinetic model, binding at a lipid-exposed site can be split into (1) membrane partitioning of the drug molecule followed by (2) binding at the extra-helical site. We find that RBFE can be applied to calculate the free energy of each step, allowing the uncoupling of observed binding free energy from the influence of membrane affinity. This protocol may be used to identify binding hot spots at extra-helical sites and guide drug discovery programs toward optimizing intrinsic activity at the target.
Texto completo:
1
Coleções:
01-internacional
Base de dados:
MEDLINE
Assunto principal:
Receptores Acoplados a Proteínas G
/
Lipídeos
Tipo de estudo:
Prognostic_studies
Idioma:
En
Revista:
J Chem Inf Model
Assunto da revista:
INFORMATICA MEDICA
/
QUIMICA
Ano de publicação:
2021
Tipo de documento:
Article
País de afiliação:
Estados Unidos