Your browser doesn't support javascript.
loading
Attention-Based Multi-Scale Generative Adversarial Network for synthesizing contrast-enhanced MRI.
Annu Int Conf IEEE Eng Med Biol Soc ; 2021: 3650-3653, 2021 11.
Article em En | MEDLINE | ID: mdl-34892028
In clinical practice, about 35% of MRI scans are enhanced with Gadolinium - based contrast agents (GBCAs) worldwide currently. Injecting GBCAs can make the lesions much more visible on contrast-enhanced scans. However, the injection of GBCAs is high-risk, time-consuming, and expensive. Utilizing a generative model such as an adversarial network (GAN) to synthesize the contrast-enhanced MRI without injection of GBCAs becomes a very promising alternative method. Due to the different features of the lesions in contrast-enhanced images while the single-scale feature extraction capabilities of the traditional GAN, we propose a new generative model that a multi-scale strategy is used in the GAN to extract different scale features of the lesions. Moreover, an attention mechanism is also added in our model to learn important features automatically from all scales for better feature aggregation. We name our proposed network with an attention-based multi-scale contrasted-enhanced-image generative adversarial network (AMCGAN). We examine our proposed AMCGAN on a private dataset from 382 ankylosing spondylitis subjects. The result shows our proposed network can achieve state-of-the-art in both visual evaluations and quantitative evaluations than traditional adversarial training.Clinical Relevance-This study provides a safe, convenient, and inexpensive tool for the clinical practices to get contrast-enhanced MRI without injection of GBCAs.
Assuntos

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Processamento de Imagem Assistida por Computador / Imageamento por Ressonância Magnética Limite: Humans Idioma: En Revista: Annu Int Conf IEEE Eng Med Biol Soc Ano de publicação: 2021 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Processamento de Imagem Assistida por Computador / Imageamento por Ressonância Magnética Limite: Humans Idioma: En Revista: Annu Int Conf IEEE Eng Med Biol Soc Ano de publicação: 2021 Tipo de documento: Article