Your browser doesn't support javascript.
loading
MRI-based automatic segmentation of rectal cancer using 2D U-Net on two independent cohorts.
Knuth, Franziska; Adde, Ingvild Askim; Huynh, Bao Ngoc; Groendahl, Aurora Rosvoll; Winter, René Mario; Negård, Anne; Holmedal, Stein Harald; Meltzer, Sebastian; Ree, Anne Hansen; Flatmark, Kjersti; Dueland, Svein; Hole, Knut Håkon; Seierstad, Therese; Redalen, Kathrine Røe; Futsaether, Cecilia Marie.
Afiliação
  • Knuth F; Department of Physics, Norwegian University of Science and Technology, Trondheim, Norway.
  • Adde IA; Department of Physics, Norwegian University of Science and Technology, Trondheim, Norway.
  • Huynh BN; Faculty of Science and Technology, Norwegian University of Life Sciences, Ås, Norway.
  • Groendahl AR; Faculty of Science and Technology, Norwegian University of Life Sciences, Ås, Norway.
  • Winter RM; Department of Physics, Norwegian University of Science and Technology, Trondheim, Norway.
  • Negård A; Department of Radiology, Akershus University Hospital, Lørenskog, Norway.
  • Holmedal SH; Institute of Clinical Medicine, University of Oslo, Oslo, Norway.
  • Meltzer S; Department of Radiology, Akershus University Hospital, Lørenskog, Norway.
  • Ree AH; Department of Oncology, Akershus University Hospital, Lørenskog, Norway.
  • Flatmark K; Institute of Clinical Medicine, University of Oslo, Oslo, Norway.
  • Dueland S; Department of Oncology, Akershus University Hospital, Lørenskog, Norway.
  • Hole KH; Institute of Clinical Medicine, University of Oslo, Oslo, Norway.
  • Seierstad T; Department of Gastroenterological Surgery, Oslo University Hospital, Oslo, Norway.
  • Redalen KR; Department of Oncology, Oslo University Hospital, Oslo, Norway.
  • Futsaether CM; Institute of Clinical Medicine, University of Oslo, Oslo, Norway.
Acta Oncol ; 61(2): 255-263, 2022 Feb.
Article em En | MEDLINE | ID: mdl-34918621
ABSTRACT

BACKGROUND:

Tumor delineation is time- and labor-intensive and prone to inter- and intraobserver variations. Magnetic resonance imaging (MRI) provides good soft tissue contrast, and functional MRI captures tissue properties that may be valuable for tumor delineation. We explored MRI-based automatic segmentation of rectal cancer using a deep learning (DL) approach. We first investigated potential improvements when including both anatomical T2-weighted (T2w) MRI and diffusion-weighted MR images (DWI). Secondly, we investigated generalizability by including a second, independent cohort. MATERIAL AND

METHODS:

Two cohorts of rectal cancer patients (C1 and C2) from different hospitals with 109 and 83 patients, respectively, were subject to 1.5 T MRI at baseline. T2w images were acquired for both cohorts and DWI (b-value of 500 s/mm2) for patients in C1. Tumors were manually delineated by three radiologists (two in C1, one in C2). A 2D U-Net was trained on T2w and T2w + DWI. Optimal parameters for image pre-processing and training were identified on C1 using five-fold cross-validation and patient Dice similarity coefficient (DSCp) as performance measure. The optimized models were evaluated on a C1 hold-out test set and the generalizability was investigated using C2.

RESULTS:

For cohort C1, the T2w model resulted in a median DSCp of 0.77 on the test set. Inclusion of DWI did not further improve the performance (DSCp 0.76). The T2w-based model trained on C1 and applied to C2 achieved a DSCp of 0.59.

CONCLUSION:

T2w MR-based DL models demonstrated high performance for automatic tumor segmentation, at the same level as published data on interobserver variation. DWI did not improve results further. Using DL models on unseen cohorts requires caution, and one cannot expect the same performance.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Neoplasias Retais / Imagem de Difusão por Ressonância Magnética Limite: Humans Idioma: En Revista: Acta Oncol Assunto da revista: NEOPLASIAS Ano de publicação: 2022 Tipo de documento: Article País de afiliação: Noruega

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Neoplasias Retais / Imagem de Difusão por Ressonância Magnética Limite: Humans Idioma: En Revista: Acta Oncol Assunto da revista: NEOPLASIAS Ano de publicação: 2022 Tipo de documento: Article País de afiliação: Noruega