Your browser doesn't support javascript.
loading
Anodizing of Hydrogenated Titanium and Zirconium Films.
Poznyak, Alexander; Pligovka, Andrei; Salerno, Marco.
Afiliação
  • Poznyak A; Department of Electronic Technology and Engineering, Belarusian State University of Informatics and Radioelectronics, 6 Brovki Str., 220013 Minsk, Belarus.
  • Pligovka A; Research and Development Laboratory 4.10 "Nanotechnologies", Belarusian State University of Informatics and Radioelectronics, 6 Brovki Str., 220013 Minsk, Belarus.
  • Salerno M; Research and Development Laboratory 4.10 "Nanotechnologies", Belarusian State University of Informatics and Radioelectronics, 6 Brovki Str., 220013 Minsk, Belarus.
Materials (Basel) ; 14(24)2021 Dec 07.
Article em En | MEDLINE | ID: mdl-34947086
Magnetron-sputtered thin films of titanium and zirconium, with a thickness of 150 nm, were hydrogenated at atmospheric pressure and a temperature of 703 K, then anodized in boric, oxalic, and tartaric acid aqueous solutions, in potentiostatic, galvanostatic, potentiodynamic, and combined modes. A study of the thickness distribution of the elements in fully anodized hydrogenated zirconium samples, using Auger electron spectroscopy, indicates the formation of zirconia. The voltage- and current-time responses of hydrogenated titanium anodizing were investigated. In this work, fundamental possibility and some process features of anodizing hydrogenated metals were demonstrated. In the case of potentiodynamic anodizing at 0.6 M tartaric acid, the increase in titanium hydrogenation time, from 30 to 90 min, leads to a decrease in the charge of the oxidizing hydrogenated metal at an anodic voltage sweep rate of 0.2 V·s-1. An anodic voltage sweep rate in the range of 0.05-0.5 V·s-1, with a hydrogenation time of 60 min, increases the anodizing efficiency (charge reduction for the complete oxidation of the hydrogenated metal). The detected radical differences in the time responses and decreased efficiency of the anodic process during the anodizing of the hydrogenated thin films, compared to pure metals, are explained by the presence of hydrogen in the composition of the samples and the increased contribution of side processes, due to the possible features of the formed oxide morphologies.
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Revista: Materials (Basel) Ano de publicação: 2021 Tipo de documento: Article País de afiliação: Belarus

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Revista: Materials (Basel) Ano de publicação: 2021 Tipo de documento: Article País de afiliação: Belarus